精英家教网 > 高中数学 > 题目详情
6.求值:
(1)5cos180°-3sin90°+2tan0°-6sin270°;
(2)cos$\frac{π}{2}$-tan0+$\frac{1}{3}$tan2π-sin$\frac{3π}{2}$-cosπ.

分析 直接利用特殊角的三角函数化简求解即可.

解答 解:(1)5cos180°-3sin90°+2tan0°-6sin270°
=-5-3+0+6
=-2;
(2)cos$\frac{π}{2}$-tan0+$\frac{1}{3}$tan2π-sin$\frac{3π}{2}$-cosπ
=0-0+0+1+1
=2.

点评 本题考查特殊角的三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)在(0,+∞)上非负可导,且满足xf′(x)+f(x)≤0若对任意正数m,n,若m<n,则必有(  )
A.nf(m)≤mf(n)B.mf(m)≤nf(n)C.nf(n)≤mf(m)D.mf(n)≤nf(m)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知cosα-sinα=$\sqrt{2}$,α∈(-π,0),则tanα的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合M={(x,y)|y=mx+b,b,m∈R},N={(x,y)|x=1+2cosα,y=sinα,α∈R},若对一切实数m∈R总有M∩N≠∅,试求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,矩形OABC内的阴影部分由直线f(x)=sinx及直线x=a(a∈(0,2π))与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为$\frac{1}{2}$,求函数h(x)=x-f(x)在[0,a]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a=2sinx-1,那么a的取值范围是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设集合A={x|a-2<x<a+2},B={x|-2<x<3}.
(1)若A?B,求实数a的取值范围;
(2)是否存在实数a使B⊆A?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个木制梯形架的上下底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面区域P:$\left\{\begin{array}{l}x≥0\\ y≥1\\ x-y+3≥0\end{array}$.设圆C:(x-a)2+(y-b)2=2,若圆心C∈P且圆C与直线x+y-7=0相切,则z=2a-b的最大值为15.

查看答案和解析>>

同步练习册答案