分析 根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到a,再求出函数h(x)=x-f(x)在[0,a]上的值域.
解答 解:根据题意,阴影部分的面积为${∫}_{0}^{a}$sinxdx=-(cosx)${|}_{0}^{a}$=1-cosa,
矩形的面积为$a•\frac{4}{a}$=4,
则由几何概型的概率公式可得$\frac{1-cosa}{4}$=$\frac{1}{2}$,
即cosa=-1,
又a∈(0,2π),
∴a=π,
h(x)=x-f(x)=x-sinx,h′(x)=1-cosx≥0
∴h(x)在[0,π]上单调递增,
∴函数h(x)=x-f(x)在[0,π]上的值域为[0,π].
点评 本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3,$\sqrt{5}$ | B. | 3,2 | C. | 3,$\sqrt{3}$ | D. | 4,2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com