分析 (1)由椭圆的两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10,利用椭圆性质列出方程组,求出a,b,由此能求出椭圆方程.
(2)设椭圆方程为mx2+ny2=1,(m>0,n>0,m≠n),利用待定系数法能求出椭圆的标准方程.
解答 解:(1)∵椭圆的两个焦点的坐标分别是(-4,0),(4,0),
椭圆上任意一点P到两焦点的距离之和等于10,
∴椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),
且$\left\{\begin{array}{l}{2a=10}\\{c=4}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=5,c=4,b=3,
∴椭圆方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.
(2)∵椭圆经过点P(-2$\sqrt{3}$,1),Q($\sqrt{3}$,-2),
∴设椭圆方程为mx2+ny2=1,(m>0,n>0,m≠n),
则$\left\{\begin{array}{l}{12m+n=1}\\{3m+4n=1}\end{array}\right.$,解得m=$\frac{1}{15}$,n=$\frac{1}{5}$,
∴椭圆的标准方程为$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}$=1.
点评 本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆性质、待定系数法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ξ | B. | ξ-μ | C. | $\frac{ξ+μ}{σ}$ | D. | $\frac{ξ-μ}{σ}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com