精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=(x-4)(x+a)为偶函数,则实数a=4.

分析 根据偶函数f(x)的定义域为R,则?x∈R,都有f(-x)=f(x),建立等式,解之即可.

解答 解:因为函数f(x)=(x+a)•(x-4)是偶函数,
所以?x∈R,都有f(-x)=f(x).
所以?x∈R,都有(-x+a)•(-x-4)=(x+a)•(x-4)
即x2+(4-a)x-4a=x2+(a-4)x-4a
所以a=4.
故答案为:4

点评 本题主要考查了函数奇偶性的性质,同时考查了运算求解的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.把-1125°化成k•360°+α(0°≤α<360°,k∈Z)的形式是(  )
A.-3×360°-315°B.-9×180°-45°C.-4×360°+315°D.-3×360°+45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合M={x|x=2n+1,n∈N},N={x|2n-1,n∈N},则集合M与N的关系是M?N,M∩N=M,M∪N=N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求适合下列条件的椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)经过点P(-2$\sqrt{3}$,1),Q($\sqrt{3}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=2,求$\frac{3sinα+4cosα}{2sinα-cosα}$=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列.
(1)若d=$\frac{1}{2}$,a10=$\frac{3}{2}$,求a3
(2)若a5=8,a9=24,求a1
(3)若a4=2,a9=-6,求S10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设连续型随机变量X的密度函数和分布函数分别为f(x),F(x),则下列选项中正确的是(  )
A.0≤f(x)≤1B.P{X=x}=f(x)C.P{X=x}=F(x)D.P{X≤x}=F(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长等于圆C2:x2+y2=8的直径,左顶点到直线l:$\frac{x}{a}$+$\frac{y}{b}$=1的距离为$\frac{{4\sqrt{6}}}{3}$,点N为原点关于椭圆C1的上顶点的对称点.
(1)求椭圆C1的标准方程;
(2)过点M(0,m)任作一条直线y=kx+m(k≠0)与椭圆C1相交于A、B两点,连接AN,BN,试问:是否存在实数m,使得$\overrightarrow{NM}$=λ($\frac{{\overrightarrow{NA}}}{{|{\overrightarrow{NA}}|}}$+$\frac{{\overrightarrow{NB}}}{{|{\overrightarrow{NB}}|}}$)成立,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案