精英家教网 > 高中数学 > 题目详情
4.若sinx-cosx=$\frac{1}{3}$,且x∈($\frac{π}{2}$,$\frac{3π}{2}$),则sinx+cosx=$-\frac{\sqrt{17}}{3}$.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sinxcosx的值,原式平方利用完全平方公式及同角三角函数间基本关系化简,开方即可求出sinx+cosx的值.

解答 解:把sinx-cosx=$\frac{1}{3}$,两边平方得:1-2sinxcosx=$\frac{1}{9}$,即2sinxcosx=$\frac{8}{9}$>0,说明sinx与cosx同号
∴(sinx+cosx)2=1+2sinxcosx=$\frac{17}{9}$,sinxcosx=$\frac{4}{9}$,
∵x∈($\frac{π}{2}$,$\frac{3π}{2}$),∴sinx<0,cosx<0,即sinx+cosx<0,
则sinx+cosx=$-\frac{\sqrt{17}}{3}$,
故答案为:$-\frac{\sqrt{17}}{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,∠A:∠B=1:2,a:b=1:$\sqrt{3}$,求△ABC的三个内角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.双曲线的一条渐近线方程是y=$\frac{4}{3}$x,一个焦点坐标为(-10,0),求它的标准方程,并求出它的实轴长,虚轴长和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(ex)可导,且y=f(ex),则dy=exf′(ex)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合M={x|x=2n+1,n∈N},N={x|2n-1,n∈N},则集合M与N的关系是M?N,M∩N=M,M∪N=N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|AB|=2$\sqrt{5}$,M是线段AB的中点,点P在平面内运动且|PA|+|PB|=6,则|PM|的最大值和最小值分别是(  )
A.3,$\sqrt{5}$B.3,2C.3,$\sqrt{3}$D.4,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求适合下列条件的椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)经过点P(-2$\sqrt{3}$,1),Q($\sqrt{3}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.y=tanx(x≠kπ+$\frac{π}{2}$,k∈Z)在定义域上的单调性为(  )
A.在整个定义域上为增函数
B.在整个定义域上为减函数
C.在每一个开区间(-$\frac{π}{2}$+kπ,$\frac{π}{2}$+kπ)(k∈Z)上为增函数
D.在每一个开区间(-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ)(k∈Z)上为增函数

查看答案和解析>>

同步练习册答案