精英家教网 > 高中数学 > 题目详情
5.函数f(x)=x3-3x2+1的减区间为(  )
A.(2,+∞)B.(-∞,2)C.(0,2)D.(-∞,0)

分析 求出f′(x)<0时x的取值范围即为函数的递减区间.

解答 解:因为函数f(x)=x3-3x2+1的f′(x)=3x2-6x,
由f′(x)<0即3x2-6x<0,
解得0<x<2,
所以函数的减区间为(0,2)
故选:C.

点评 考查学生利用导数研究函数单调性的能力,以及会求一元二次不等式的解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.双曲线的一条渐近线方程是y=$\frac{4}{3}$x,一个焦点坐标为(-10,0),求它的标准方程,并求出它的实轴长,虚轴长和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求适合下列条件的椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)经过点P(-2$\sqrt{3}$,1),Q($\sqrt{3}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列.
(1)若d=$\frac{1}{2}$,a10=$\frac{3}{2}$,求a3
(2)若a5=8,a9=24,求a1
(3)若a4=2,a9=-6,求S10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a=cos$\frac{2π}{7}$,b=sin$\frac{5π}{7}$,c=tan$\frac{2π}{7}$,则a,b,c的大小关系为a<b<c(按由小至大顺序排列).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设连续型随机变量X的密度函数和分布函数分别为f(x),F(x),则下列选项中正确的是(  )
A.0≤f(x)≤1B.P{X=x}=f(x)C.P{X=x}=F(x)D.P{X≤x}=F(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.y=tanx(x≠kπ+$\frac{π}{2}$,k∈Z)在定义域上的单调性为(  )
A.在整个定义域上为增函数
B.在整个定义域上为减函数
C.在每一个开区间(-$\frac{π}{2}$+kπ,$\frac{π}{2}$+kπ)(k∈Z)上为增函数
D.在每一个开区间(-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ)(k∈Z)上为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sinα=$\frac{3}{5}$,α是第二象限角,分别求sin2α、cos2α、tan2α的值.

查看答案和解析>>

同步练习册答案