精英家教网 > 高中数学 > 题目详情
15.已知sinα=$\frac{3}{5}$,α是第二象限角,分别求sin2α、cos2α、tan2α的值.

分析 由已知利用同角三角函数基本关系式可求cosα,进而利用二倍角公式可求sin2α、cos2α的值,再利用同角三角函数基本关系式可求tan2α的值.

解答 解:∵sinα=$\frac{3}{5}$,α是第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\sqrt{1-(\frac{3}{5})^{2}}$=-$\frac{4}{5}$,
∴sin2α=2sinαcosα=2×$\frac{3}{5}$×(-$\frac{4}{5}$)=-$\frac{24}{25}$;
cos2α=1-2sin2α=1-2×($\frac{3}{5}$)2=$\frac{7}{25}$;
tan2α=$\frac{sin2α}{cos2α}$=$\frac{-\frac{24}{25}}{\frac{7}{25}}$=-$\frac{24}{7}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x3-3x2+1的减区间为(  )
A.(2,+∞)B.(-∞,2)C.(0,2)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量ξ~N(μ,σ2),那么下面哪个变量服从标准正态分布?(  )
A.ξB.ξ-μC.$\frac{ξ+μ}{σ}$D.$\frac{ξ-μ}{σ}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为y=sin($\frac{π}{4}$x+$\frac{π}{4}$);若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍得到函数g(x)=cos$\frac{π}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sinx-cosx的值域为 (  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg(x+4)的定义域是(-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=4cos2?x-4$\sqrt{3$sin?x•cos?x的最小正周期为π(?>0).
(1)求?的值;
(2)若f(x)的定义域为[-$\frac{π}{3}$,$\frac{π}{6}$],求f(x)的最大值与最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(1,-2,1),向量$\overrightarrow{a}$=(-3,4,12),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$的方向相同,且|$\overrightarrow{AB}$|=2|$\overrightarrow{a}$|
(1)求点B的坐标;
(2)若点M在直线OA(O为坐标原点)上运动,当$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值时,求点M的坐标.

查看答案和解析>>

同步练习册答案