精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=4cos2?x-4$\sqrt{3$sin?x•cos?x的最小正周期为π(?>0).
(1)求?的值;
(2)若f(x)的定义域为[-$\frac{π}{3}$,$\frac{π}{6}$],求f(x)的最大值与最小值及相应的x的值.

分析 (1)利用三角恒等变换化简函数f(x),再根据周期为π求出ω的值;
(2)当x∈[-$\frac{π}{3}$,$\frac{π}{6}$]时,利用正弦函数的图象与性质求出f(x)的最大、最小值以及对应的x值.

解答 解:(1)函数f(x)=4cos2?x-4$\sqrt{3$sin?x•cos?x
=4•$\frac{1+cos2ωx}{2}$-4$\sqrt{3}$•$\frac{1}{2}$sin2ωx
=2cos2ωx-2$\sqrt{3}$sin2ωx+2
=-4sin(2ωx-$\frac{π}{6}$)+2,
又f(x)的最小正周期为T=$\frac{2π}{2ω}$=π,
所以?=1;
(2)∵f(x)=-4sin(2x-$\frac{π}{6}$)+2的定义域为[-$\frac{π}{3}$,$\frac{π}{6}$],即x∈[-$\frac{π}{3}$,$\frac{π}{6}$],
∴2x∈[-$\frac{2π}{3}$,$\frac{π}{3}$],
2x-$\frac{π}{6}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
所以sin(2x-$\frac{π}{6}$)∈[-1,$\frac{1}{2}$];
所以当sin(2x-$\frac{π}{6}$)=-1时,f(x)取得最大值为-4×(-1)+2=6,此时x=-$\frac{π}{6}$;
当sin(2x-$\frac{π}{6}$)=$\frac{1}{2}$时,f(x)取得最小值为-4×$\frac{1}{2}$+2=0,此时x=$\frac{π}{6}$.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦函数的周期性、定义域和值域,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设连续型随机变量X的密度函数和分布函数分别为f(x),F(x),则下列选项中正确的是(  )
A.0≤f(x)≤1B.P{X=x}=f(x)C.P{X=x}=F(x)D.P{X≤x}=F(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长等于圆C2:x2+y2=8的直径,左顶点到直线l:$\frac{x}{a}$+$\frac{y}{b}$=1的距离为$\frac{{4\sqrt{6}}}{3}$,点N为原点关于椭圆C1的上顶点的对称点.
(1)求椭圆C1的标准方程;
(2)过点M(0,m)任作一条直线y=kx+m(k≠0)与椭圆C1相交于A、B两点,连接AN,BN,试问:是否存在实数m,使得$\overrightarrow{NM}$=λ($\frac{{\overrightarrow{NA}}}{{|{\overrightarrow{NA}}|}}$+$\frac{{\overrightarrow{NB}}}{{|{\overrightarrow{NB}}|}}$)成立,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sinα=$\frac{3}{5}$,α是第二象限角,分别求sin2α、cos2α、tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow a$=(-5,1),$\overrightarrow b$=(2,x),且$\overrightarrow a$⊥$\overrightarrow b$,则x的值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=-3+i在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的两个焦点,P为椭圆上一动点,则使|PF1|•|PF2|取最大值的点P为(  )
A.(-2,0)B.(0,1)C.(2,0)D.(0,1)或(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:?x∈[-1,1],m≤x2,命题q:?x∈R,x2+mx+1>0,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的圆心为C(m,0),m<3,半径为$\sqrt{5}$,圆C与离心率$e>\frac{1}{2}$的椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的其中一个公共点为A(3,1),F1、F2分别是椭圆的左、右焦点.
(1)求圆C的标准方程;
(2)若点P的坐标为(4,4),试探究直线PF1与圆C能否相切,若能,求出椭圆E和直线PF1的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案