分析 (1)设B(x,y,z),根据$\overrightarrow{AB}$=2$\overrightarrow{a}$列方程解出x,y,z;
(2)由O,A,M三点共线可设$\overrightarrow{OM}$=λ$\overrightarrow{OA}$,求出$\overrightarrow{MA},\overrightarrow{MB}$的坐标,得出$\overrightarrow{MA}$•$\overrightarrow{MB}$关于λ的函数,利用二次函数的性质求出$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值时对应的λ的值,从而得出M的坐标.
解答 解:(1)设B(x,y,z),则$\overrightarrow{AB}$=(x-1,y+2,z-1),
∵向量$\overrightarrow{AB}$与$\overrightarrow{a}$的方向相同,且|$\overrightarrow{AB}$|=2|$\overrightarrow{a}$|,
∴$\overrightarrow{AB}$=2$\overrightarrow{a}$.∴$\left\{\begin{array}{l}{x-1=-6}\\{y+2=8}\\{z-1=24}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-5}\\{y=6}\\{z=25}\end{array}\right.$.
∴B(-5,6,25).
(2)∵点M在直线OA(O为坐标原点)上运动,∴$\overrightarrow{OM}$=λ$\overrightarrow{OA}$=(λ,-2λ,λ).
∴$\overrightarrow{MA}$=$\overrightarrow{OA}-\overrightarrow{OM}$=(1-λ,-2+2λ,1-λ),$\overrightarrow{MB}$=$\overrightarrow{OB}-\overrightarrow{OM}$=(-5-λ,6+2λ,25-λ).
∴$\overrightarrow{MA}•\overrightarrow{MB}$=(1-λ)(-5-λ)+(-2+2λ)(6+2λ)+(1-λ)(25-λ)=6λ2-14λ+8=6(λ-$\frac{7}{6}$)2-$\frac{1}{6}$.
∴当$λ=\frac{7}{6}$时,$\overrightarrow{MA}•\overrightarrow{MB}$取得最小值.
∴M($\frac{7}{6}$,-$\frac{7}{3}$,$\frac{7}{6}$).
点评 本题考查了向量的共线定理,向量的数量积运算,二次函数的最值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$<Tn≤$\frac{2}{3}$ | B. | Tn>$\frac{1}{2}$ | C. | $\frac{1}{2}$≤Tn<$\frac{2}{3}$. | D. | Tn≥$\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com