精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为Sn,对任意n∈N*,都有Sn=
2
3
an-
1
3
,且ak=8,则k的值为(  )
A、1B、2C、3D、4
分析:分别令n=1和n=2,求出等比数列的第一项和第二项即可得到等比数列的首项和公比,写出等比数列的通项公式,然后根据ak=20即可求出k的值
解答:解:令n=1,得s1=a1=
2
3
a1-
1
3
,解得a1=-1;令n=2,得s2=a1+a2=-1+a2=
2
3
a2-
1
3
,解得a2=2,所以公比q=-2
所以ak=a1qk-1=-1×(-2)k-1=8,解得k=4
故选D
点评:本题主要考查了根据递推公式得到等比数列的通项公式.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案