精英家教网 > 高中数学 > 题目详情
15.三棱锥P-ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D、E分别在棱PB、PC上运动,则△ADE周长的最小值为5$\sqrt{3}$.

分析 把已知三棱锥沿棱PA将三棱锥侧面剪开并展开,可得展开图如图,再由余弦定理求得答案.

解答 解:如图,

沿棱PA将三棱锥侧面剪开并展开,可得展开图如图,
此时|PA|=|PA′|=5,且角APA′=120°,
∴△ADE周长的最小值为|AA′|=$\sqrt{{5}^{2}+{5}^{2}-2×5×5×cos120°}=5\sqrt{3}$.
故答案为:$5\sqrt{3}$.

点评 本题考查棱锥的结构特征,考查与多面体有关的最值问题,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,BC为圆O的直径,A为圆O上一点,过点A的直线与圆O相切,且与线段BC的延长线交于点D,E为线段AC延长线上的一点,且ED∥AB.
(1)求证AC•AD=AB•CD;
(2)若DE=4,DC=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,正方形ABCD的边长等于2,等腰三角形PAB中PA=PB,且平面PAB⊥平面ABCD,若直线PD与平面ABCD所成的角为$\frac{π}{4}$,则PA的长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在同一平面直角坐标系中,将曲线y=3sin2x按伸缩变换$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$后,所得曲线为(  )
A.y=sinxB.y=9sin4xC.y=sin4xD.y=9sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点P(-1,2)的动直线交圆C:x2+y2=3于A,B两点,分别过A,B作圆C的切线,若两切线相交于点Q,则点Q的轨迹为(  )
A.直线的一部分B.圆的一部分C.椭圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=log0.8(2x2-ax+3)在区间(-1,+∞)内为减函数,则实数a的取值范围是[-5,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\sqrt{-{x}^{2}+4x+2}$的值域是[0,$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=1,$\frac{1}{12}$an=$\frac{1}{4}$an-1+$\frac{1}{3}$(n≥2),则{an}的通项公式为an=3n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={x|3x2-2x>0},集合B={x||x-1|<m},若B是A的子集,则实数m的取值范围为(-∞,$\frac{1}{3}$].

查看答案和解析>>

同步练习册答案