精英家教网 > 高中数学 > 题目详情
7.函数y=$\sqrt{-{x}^{2}+4x+2}$的值域是[0,$\sqrt{6}$].

分析 由-x2+4x+2≥0,化为x2-4x-2≤0,解得x的范围即为函数的定义域.又函数y=$\sqrt{-{x}^{2}+4x+2}$=$\sqrt{-(x-2)^{2}+6}$,利用二次函数的单调性即可得出.

解答 解:由-x2+4x+2≥0,化为x2-4x-2≤0,解得$2-\sqrt{6}$≤x≤2+$\sqrt{6}$.
∴函数的定义域为[$2-\sqrt{6}$,2+$\sqrt{6}$].
又函数y=$\sqrt{-{x}^{2}+4x+2}$=$\sqrt{-(x-2)^{2}+6}$≤$\sqrt{6}$,当且仅当x=2时取等号.
∴函数的值域为[0,$\sqrt{6}$].
故答案为:[0,$\sqrt{6}$].

点评 本题考查了二次函数的单调性、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图甲,圆O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$,沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,根据图乙解答下列各题:
(1)求点B到平面ACD的距离;
(2)如图:若∠DOB的平分线交$\widehat{BD}$于一点G,试判断FG是否与平面ACD平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C:(x-a)2+(y-b)2=1(a>1)关于直线y=x+1对称,直线x+y-4=0交圆C与A,B两点,且|AB|=$\sqrt{2}$.
(1)求圆C的方程;
(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O为坐标原点),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三棱锥P-ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D、E分别在棱PB、PC上运动,则△ADE周长的最小值为5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过原点且倾斜角为120°的直线被圆x2+y2-4y=0所截得的弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知幂函数f(x)=x${\;}^{{m}^{2}-m-3}$(其中m∈N*且m≥2)为奇函数,且在(0,+∞)上是单调减函数.
(1)求函数f(x);
(2)比较f(-2013)与f(-2014)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC和平面α,∠A=30°,∠B=60°,AB=2,AB?α,且平面ABC与α所成角为30°,则点C到平面α的距离为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-3,x∈(0,1]}\\{{2}^{x-1}-1,x∈(1,2]}\end{array}\right.$且g(x)=f(x)-mx在(0,2]内有且仅有两个不同的零点,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过直线l:2x+y-2=0上任意一点P做圆C:x2+y2+2x=0的切线,切点为A,则切线|PA|的最小值为$\frac{\sqrt{55}}{5}$.

查看答案和解析>>

同步练习册答案