精英家教网 > 高中数学 > 题目详情
2.过原点且倾斜角为120°的直线被圆x2+y2-4y=0所截得的弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{6}$D.2

分析 由题意求得直线l的方程,再由圆的方程得到圆心和半径,根据圆心到直线的距离,利用勾股定理即可求出弦长.

解答 解:根据题意,直线l的方程为y=-$\sqrt{3}$x,即$\sqrt{3}$x+y=0;
又圆x2+y2-4y=0,化为标准方程是x2+(y-2)2=4,
所以圆心为C(0,2),半径为r=2,
所以圆心C到直线l的距离为d=$\frac{|\sqrt{3}×0-1×2|}{\sqrt{{(\sqrt{3})}^{2}{+1}^{2}}}$=1;
又d2+${(\frac{AB}{2})}^{2}$=r2
所以弦长AB=2$\sqrt{{r}^{2}{-d}^{2}}$=2×$\sqrt{{2}^{2}{-1}^{2}}$=2$\sqrt{3}$.
故选:B.

点评 本题考查了直线和圆的位置关系以及点到直线的距离公式和弦长公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,圆O的直径AB长度为10,CD是点C处的切线,AD⊥CD,若BC=8,则CD=(  )
A.$\frac{15}{2}$B.$\frac{40}{3}$C.$\frac{18}{5}$D.$\frac{24}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在极坐标平面内,点M($\frac{π}{3}$,200π),N(-$\frac{π}{3}$,201π),G(-$\frac{π}{3}$,-200π),H(2π+$\frac{π}{3}$,200π)中互相重合的两个点是(  )
A.M和NB.M和GC.M和HD.N和H

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点P(-1,2)的动直线交圆C:x2+y2=3于A,B两点,分别过A,B作圆C的切线,若两切线相交于点Q,则点Q的轨迹为(  )
A.直线的一部分B.圆的一部分C.椭圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{0(x<0)}\\{π(x=0)}\\{x+1(x>0)}\end{array}\right.$,则f{f[f(-π)]}=π+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\sqrt{-{x}^{2}+4x+2}$的值域是[0,$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{-x}-2,x≤0}\\{2ax-1,x>0}\end{array}\right.$(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在($\frac{1}{2}$,+∞)上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
其中正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2,在梯形ACEF中,EF∥AC,且AC=2EF,CE=$\frac{\sqrt{6}}{4}$,且EC⊥平面ABCD.
(1)求证:DE=BE;
(2)求面ABF与面EBC所成二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=$\frac{π}{6}$.
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|

查看答案和解析>>

同步练习册答案