精英家教网 > 高中数学 > 题目详情
8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=$\frac{π}{6}$.
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|

分析 (1)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程,
(2)利用|AB|=|ρ12|即可得出.

解答 解:(1)曲线C1的普通方程为(x-1)2+y2=1,即x2+y2-2x=0
由x=ρcosθ,y=ρsinθ,得ρ2-2ρcosθ=0
所以曲线C1的极坐标方程为ρ=2cosθ
(2)设点A的极坐标为$({{ρ_1},\frac{π}{6}})$,点B的极坐标为$({{ρ_2},\frac{π}{6}})$,则${ρ_1}=2cos\frac{π}{6}=\sqrt{3},{ρ_2}=sin\frac{π}{6}+cos\frac{π}{6}=\frac{1}{2}+\frac{{\sqrt{3}}}{2}$,
所以$|{AB}|=|{{ρ_1}-{ρ_2}}|=\frac{{\sqrt{3}-1}}{2}$

点评 本题考查了圆的极坐标方程、参数方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.过原点且倾斜角为120°的直线被圆x2+y2-4y=0所截得的弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P直角△ABC所在平面外一点,PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,则点P到BC的距离是$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=2,AA1=$\sqrt{2}$,E是A1C1边的中点,过A,B,E作截面交B1C1于点D
(Ⅰ)证明:B1C⊥AD;
(Ⅱ)求点C1到截面ABDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二次函数f(x)的开口向上,且对?x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过直线l:2x+y-2=0上任意一点P做圆C:x2+y2+2x=0的切线,切点为A,则切线|PA|的最小值为$\frac{\sqrt{55}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.教育储蓄是一种零存整取定期储蓄存款,享受整存整取利率,利息免税,如果每月月初存a元,零存整取3年期教育储蓄月利率为p,则第3年年底一次性支取a(36+666p)元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直三棱柱ABC-A1B1C1中,$∠ACB={90°},AC=1,CB=\sqrt{2}$,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M.
(1)求证:CD⊥平面BDM;
(2)求证:面A1CB⊥平面BDM;
(3)求二面角B1-BD-C的平面角的余弦值;
(4)求直线BM与平面A1CB成角正切值;
(5)求点A到面BDM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从点P出发的三条线段PA=PB=PC=1,且它们两两垂直,则二面角P-AB-C的大小为arctan$\sqrt{2}$;P到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案