分析 作AD⊥BC,垂足为D,连接PD,利用PA⊥BC,AD∩PA=A满足线面垂直的判定定理可知BC⊥面PAD,根据线面垂直的性质可知BC⊥PD,则PD为P到直线BC的距离.在直角三角形PAD中求出AD即可.
解答 解:作AD⊥BC,垂足为D,连接PD
,
∵PA⊥△ABC所在平面,BC?平面ABC,
∴PA⊥BC,
而AD∩PA=A,
∴BC⊥面PAD,PD?平面ABC,
∴BC⊥PD,
即PD为P到直线BC的距离,
∴∠A=90°,AB=3,AC=4,
∴BC=5,
∴AD=$\frac{12}{5}$,
∵PA=1,
∴在直角三角形PAD中,PD=$\frac{13}{5}$,
∴P到直线BC的距离为$\frac{13}{5}$.
故答案为:$\frac{13}{5}$.
点评 本题主要考查了点到直线的距离,以及线面垂直的判定定理和性质,同时考查了空间想象能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | M和N | B. | M和G | C. | M和H | D. | N和H |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com