精英家教网 > 高中数学 > 题目详情
14.在以下区间中,函数f(x)=ex+x3-4存在零点的是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

分析 根据导函数判断函数f(x)=ex+x3-4单调递增,运用零点判定定理,判定区间.

解答 解:∵函数f(x)=ex+x3-4,
∴f′(x)=ex+4
∵ex>0,∴f′(x)=ex+4>0
∴函数f(x)=ex+x3-4,在(-∞,+∞)上为增函数,
f(2)=e2+23-4=e2+4>0,
f(1)=e1+13-4<0,
∴f(1)•f(2)<0,
∴函数f(x)=ex+x3-4的零点所在的区间为(1,2)
故选:C.

点评 本题考查函数的单调性以及函数零点的判断方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知正三棱锥P-ABC的外接球的半径为2,且球心在点A,B,C所确定的平面上,则该正三棱锥的表面积是(  )
A.3$\sqrt{2}$+3B.3($\sqrt{15}$+$\sqrt{3}$)C.3$\sqrt{15}$+3$\sqrt{2}$D.3($\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列命题:
①y=sin($\frac{π}{2}$+x)是偶函数;
②若α,β是第一象限角,且α<β,则tanα<tanβ;
③y=tan(x+$\frac{π}{4}$)图象的一个对称中心是($\frac{π}{4}$,0);
④cos1<sin1<tan1.
其中所有正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,点A1在侧面BB1C1C上的射影为正方形BB1C1C的中心M,且BB1=2$\sqrt{2}$,AB=AC=3,E为A1C1的中点.
(1)求证:A1B∥平面B1CE;
(2)求二面角B-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$,设E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P直角△ABC所在平面外一点,PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,则点P到BC的距离是$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设点A的极坐标为(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直线l经过A点,且倾斜角为α.
(1)证明:l的极坐标方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O点到l的最短距离d=ρ1,求θ1与α间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二次函数f(x)的开口向上,且对?x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知圆O的半径长为4,两条弦AC,BD相交于点E,若$BD=4\sqrt{3}$,BE>DE,E为AC的中点,$AB=\sqrt{2}AE$.
(1)求证:AC平分∠BCD;
(2)求∠ADB的度数.

查看答案和解析>>

同步练习册答案