精英家教网 > 高中数学 > 题目详情
6.设点A的极坐标为(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直线l经过A点,且倾斜角为α.
(1)证明:l的极坐标方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O点到l的最短距离d=ρ1,求θ1与α间的关系.

分析 (1)如图所示,设直线l上的任意一点P(ρ,θ).在△OAP中,利用正弦定理即可得出.
(2)O点到l的短距离d=ρ1,可得OA⊥l.画图即可得出.

解答 (1)证明:如图所示,
设直线l上的任意一点P(ρ,θ).
在△OAP中,由正弦定理可得:$\frac{{ρ}_{1}}{sin(α-θ)}$=$\frac{ρ}{sin[{θ}_{1}+π-α]}$,
化为ρsin(θ-α)=ρ1sin(θ1-α),
∴l的极坐标方程是ρsin(θ-α)=ρ1sin(θ1-α).
(2)解:∵O点到l的短距离d=ρ1,则OA⊥l.
∴θ1=α±$\frac{π}{2}$.

点评 本题考查了极坐标方程的应用、正弦定理、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知圆C:(x-a)2+(y-a)2=2,(a>0)与直线y=2x相交于P,Q两点,则当△CPQ的面积最大时,实数a的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)=$\frac{{e}^{x}}{{x}^{2}+ax+a}$的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在以下区间中,函数f(x)=ex+x3-4存在零点的是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程是$\frac{2}{{ρ}^{2}}$=1+sin2θ,直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与x轴的交点是P,直线l与曲线C交于M,N两点,求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,若关于P的方程f[f(x)]+m=0恰有两个不等实根x1、x2,则x1+x2的最小值为1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,点F为PA的中点.
(1)求证:EF⊥平面PAD;
(2)求P到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2-6x-2y-6=0,其中C为圆心.
(I)若过点P(1,0)的直线l与圆C交于M、N两点,且$\overrightarrow{CM}$•$\overrightarrow{CN}$=-8,求直线l的方程;
(II)过点P(1,0)作圆C的两条弦BD、EF使得$\overrightarrow{BD}$•$\overrightarrow{EF}$=0,求四边形BEDF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正三棱柱ABC-A1B1C1中,所有底面边长和侧棱长均等于2,D为AC上一点,且BD⊥DC1,求:
(1)异面直线AB1与BC1所成角的大小;
(2)直线A1B与平面BDC1所成角的大小.

查看答案和解析>>

同步练习册答案