精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,若关于P的方程f[f(x)]+m=0恰有两个不等实根x1、x2,则x1+x2的最小值为1-ln2.

分析 可判断f(x)<0恒成立;从而化简方程为f(x)=-lnm,从而作图辅助,可知存在实数a(a≤-1),使-2x1=a=-${e}^{-{x}_{2}}$,从而可得x1+x2=-$\frac{a}{2}$-ln(-a),再构造函数,求导,从而确定最值.

解答 解:∵f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,∴f(x)<0恒成立;
∴f[f(x)]=-e-f(x)
∵f[f(x)]+m=0,
∴-e-f(x)+m=0,即f(x)=-lnm;
作函数f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,y=-lnm的图象如下,

结合图象可知,存在实数a(a≤-1),使-2x1=a=-${e}^{-{x}_{2}}$,
故x1+x2=-$\frac{a}{2}$-ln(-a),
令g(a)=-$\frac{a}{2}$-ln(-a),则g′(a)=-$\frac{2+a}{2a}$,
故当a=-2时,x1+x2有最大值1-ln2;
故答案为:1-ln2.

点评 本题考查了复合函数与分段函数的应用,同时考查了导数的综合应用及最值问题,应用了数形结合的思想及转化构造的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,正方形BCDE的边长为a,已知AB=$\sqrt{3}$BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是$\sqrt{2}$;
(2)三棱锥B-ACE的体积是$\frac{1}{6}{a^3}$;
(3)直线BA与平面ADE所成角的正弦值为$\frac{1}{3}$.
(4)平面EAB⊥平面ADE;
(5)四棱锥A-BCDE的外接球的表面积为πa2
其中错误的叙述的是③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,点A1在侧面BB1C1C上的射影为正方形BB1C1C的中心M,且BB1=2$\sqrt{2}$,AB=AC=3,E为A1C1的中点.
(1)求证:A1B∥平面B1CE;
(2)求二面角B-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P直角△ABC所在平面外一点,PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,则点P到BC的距离是$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设点A的极坐标为(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直线l经过A点,且倾斜角为α.
(1)证明:l的极坐标方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O点到l的最短距离d=ρ1,求θ1与α间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=2,AA1=$\sqrt{2}$,E是A1C1边的中点,过A,B,E作截面交B1C1于点D
(Ⅰ)证明:B1C⊥AD;
(Ⅱ)求点C1到截面ABDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二次函数f(x)的开口向上,且对?x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.教育储蓄是一种零存整取定期储蓄存款,享受整存整取利率,利息免税,如果每月月初存a元,零存整取3年期教育储蓄月利率为p,则第3年年底一次性支取a(36+666p)元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,设D是弦AB延长线上一点,且AB=2BD,过D作圆的切线于E,若C为线段AB的中点,连结EC交圆于点F,若$BC=\sqrt{3}CF$.
(Ⅰ)求证:EC=ED
(Ⅱ)求证:AE⊥ED.

查看答案和解析>>

同步练习册答案