精英家教网 > 高中数学 > 题目详情
5.如图,正方形BCDE的边长为a,已知AB=$\sqrt{3}$BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是$\sqrt{2}$;
(2)三棱锥B-ACE的体积是$\frac{1}{6}{a^3}$;
(3)直线BA与平面ADE所成角的正弦值为$\frac{1}{3}$.
(4)平面EAB⊥平面ADE;
(5)四棱锥A-BCDE的外接球的表面积为πa2
其中错误的叙述的是③⑤.

分析 对于①,由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角,求出tan∠ABC加以判断;
对于②,根据三棱锥的体积公式即可求VB-ACE的体积;
对于③,确定∠BAE为直线BA与平面ADE所成角,求解即可判断;
对于④,证明BE⊥平面ADE,利用面面平行的判定,可得平面EAB⊥平面ADE;
对于⑤,把四棱锥A-BCDE的外接球,转化为以D为一个顶点,以DA、DC、DE为三条棱的正方体的外接球求解判断.

解答 解:作出折叠后的几何体直观图如图所示:
对于①,∵AB=$\sqrt{3}$a,BE=a,∴AE=$\sqrt{2}$a.
∴AD=$\sqrt{A{E}^{2}-D{E}^{2}}=a$,∴AC=$\sqrt{C{D}^{2}+A{D}^{2}}=\sqrt{2}a$.
在△ABC中,cos∠ABC=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}=\frac{3{a}^{2}+{a}^{2}-2{a}^{2}}{2\sqrt{3}{a}^{2}}$=$\frac{\sqrt{3}}{3}$,
∴sin∠ABC=$\sqrt{1-co{s}^{2}∠ABC}=\frac{\sqrt{6}}{3}$,
∴tan∠ABC=$\frac{sin∠ABC}{cos∠ABC}=\sqrt{2}$.
∵BC∥DE,∴∠ABC是异面直线AB,DE所成的角,故①正确;
对于②,三棱锥B-ACE的体积V=$\frac{1}{3}{S}_{△BCE}•AD=\frac{1}{3}×\frac{1}{2}{a}^{2}•a=\frac{1}{6}{a}^{3}$,故②正确;
对于③,∵BE⊥平面ADE,∴∠BAE为直线BA与平面ADE所成角,
在△BAE中,∠BEA=90°,BE=a,AB=$\sqrt{3}$a,
∴sin∠BEA=$\frac{BE}{AB}=\frac{a}{\sqrt{3}a}=\frac{\sqrt{3}}{3}$,故③错误;
对于④,∵AD⊥平面BCDE,BE?平面BCDE,∴AD⊥BE,
∵BE⊥ED,AD∩ED=D,∴BE⊥平面ADE,
∵BE?平面EAB,∴平面EAB⊥平面ADE,故④正确;
对于⑤,四棱锥A-BCDE的外接球,即以D为一个顶点,以DA、DC、DE为三条棱的正方体的外接球,其半径R满足(2R)2=3a2
∴R=$\frac{\sqrt{3}}{2}a$,则棱锥A-BCDE的外接球的表面积为4π•$(\frac{\sqrt{3}}{2}a)^{2}=3π{a}^{2}$,故⑤错误.
∴错误的命题是③⑤.
故答案为:③⑤.

点评 本题考查图形的翻折,考查空间线面位置关系,搞清翻折前后的变与不变是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥A-BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.
(Ⅰ)求证:EM∥平面ABC.
(Ⅱ)若CD=2BE=2,求点D到平面EMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x>0,函数y=x+$\frac{9}{x}$的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在极坐标平面内,点M($\frac{π}{3}$,200π),N(-$\frac{π}{3}$,201π),G(-$\frac{π}{3}$,-200π),H(2π+$\frac{π}{3}$,200π)中互相重合的两个点是(  )
A.M和NB.M和GC.M和HD.N和H

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C:(x-a)2+(y-a)2=2,(a>0)与直线y=2x相交于P,Q两点,则当△CPQ的面积最大时,实数a的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点P(-1,2)的动直线交圆C:x2+y2=3于A,B两点,分别过A,B作圆C的切线,若两切线相交于点Q,则点Q的轨迹为(  )
A.直线的一部分B.圆的一部分C.椭圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{0(x<0)}\\{π(x=0)}\\{x+1(x>0)}\end{array}\right.$,则f{f[f(-π)]}=π+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{-x}-2,x≤0}\\{2ax-1,x>0}\end{array}\right.$(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在($\frac{1}{2}$,+∞)上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
其中正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,若关于P的方程f[f(x)]+m=0恰有两个不等实根x1、x2,则x1+x2的最小值为1-ln2.

查看答案和解析>>

同步练习册答案