精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥A-BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.
(Ⅰ)求证:EM∥平面ABC.
(Ⅱ)若CD=2BE=2,求点D到平面EMC的距离.

分析 (Ⅰ)取AC的中点F,连接BF,证明BF⊥平面ACD,结合EM⊥平面ACD,所以EM∥BF,再结合线面平行的判定定理得到EM∥面ABC;
(Ⅱ)由等面积法求出点D到平面EMC的距离.

解答 证明:(Ⅰ)取AC的中点F,连接BF,
因为AB=BC,所以BF⊥AC,
又因为CD⊥平面ABC,所以CD⊥BF,
所以BF⊥平面ACD,…(3分)
因为EM⊥平面ACD,
所以EM∥BF,
因为EM?面ABC,BF?平面ABC,
所以EM∥平面ABC; …(6分)
解:(Ⅱ)因为EM⊥平面ACD,EM?面EMC,
所以平面CME⊥平面ACD,平面CME∩平面ACD=CM,
过点D作直线DG⊥CM,则DG⊥平面CME,…(9分)
由已知CD⊥平面ABC,BE∥CD,AB=BC=CD=2BE,可得AE=DE,
又EM⊥AD,
所以M为AD的中点,
在Rt△ABC中,$AC=\sqrt{2}BC=2\sqrt{2}$,
在Rt△ADC中,$AD=\sqrt{C{D^2}+A{C^2}}=2\sqrt{3}$,
${S_{△CDM}}=\frac{1}{2}{S_{△ACD}}=\frac{1}{2}×\frac{1}{2}×2×2\sqrt{2}=\sqrt{2}$,
在△DCM中,$CM=\frac{1}{2}AD=\sqrt{3}$,
由等面积法知$\frac{1}{2}×CM×DG=\sqrt{2}$,
所以$DG=\frac{{2\sqrt{6}}}{3}$,
即点D到平面EMC的距离为$\frac{{2\sqrt{6}}}{3}$.…(12分)

点评 本题考查的知识点是直线与平面平行的判定,点D到平面EMC的距离,其中熟练掌握空间线面平行或垂直的判定、性质、定义、几何特征是解答此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对于独立性检验,下列说法正确的是(  )
A.K2的值可以为负值
B.K2独立性检验的统计假设是各事件之间相互独立
C.K2独立性检验显示“患慢性气管炎和吸烟习惯有关”即指“有吸烟习惯的人必会患慢性气管炎”
D.2×2列联表中的4个数据可为任何实数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:函数f(x)=|1-3x|+3+ax.
(1)若a=-1,解不等式f(x)≤5;
(2)若函数f(x)有最小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且BN=$\frac{1}{3}$BC.
(1)求证:MN⊥AB;
(2)求平面MAN与平面PAN所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当前《奔跑吧兄弟第三季》正在热播,某校一兴趣小组为研究收看《奔跑吧兄弟第三季》与年龄是否相关,在某市步行街随机抽取了110名成人进行调查,发现45岁及以上的被调查对象中有10人收看,有25人未收看;45岁以下的被调查对象中有50人收看,有25人未收看.
(1)试根据题设数据完成下列2×2 列联表,并说明是否有99.9%的把握认为收看《奔跑吧兄弟第三季》与年龄有关;
2×2 列联表
收看不收看总计
45岁以上
45岁以下
总计
(2)采取分层抽样的方法从45岁及以上的被调查对象中抽取了7人.从这7人中任意抽取2人,求至少有一人收看《奔跑吧兄弟第三季》的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0100.0050.001
K06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=ex+x-4的零点所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=ex-1-ax有且仅有一个零点,则a的取值范围(-∞,0]∪{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PCD⊥底面ABCD,PD=DC=2,∠PDC=120°,E是线段PC的中点,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)求点F到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,正方形BCDE的边长为a,已知AB=$\sqrt{3}$BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是$\sqrt{2}$;
(2)三棱锥B-ACE的体积是$\frac{1}{6}{a^3}$;
(3)直线BA与平面ADE所成角的正弦值为$\frac{1}{3}$.
(4)平面EAB⊥平面ADE;
(5)四棱锥A-BCDE的外接球的表面积为πa2
其中错误的叙述的是③⑤.

查看答案和解析>>

同步练习册答案