精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PCD⊥底面ABCD,PD=DC=2,∠PDC=120°,E是线段PC的中点,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)求点F到平面ADE的距离.

分析 (Ⅰ)证明:DC⊥面EFH,即可证明:EF⊥CD;
(Ⅱ)根据点F到平面ADE的距离等于点H到平面ADE的距离,即可求点F到平面ADE的距离.

解答 证明:(Ⅰ)在侧面PCD中,PD=DC=2,∠PDC=120°,E是PC中点,
∴DE=1,
过E作EH⊥DC于H,连结FH,
∵底面ABCD是正方形,$\overrightarrow{AF}=\frac{1}{4}\overrightarrow{AB}$,
即$AF=\frac{1}{2}$,
∴AFHD是矩形,
∴FH⊥DC,…(3分)
又EH⊥DC,EH∩FH=H,
∴DC⊥面EFH,…(5分)
又∵EF?面EFH,
∴DC⊥EF.                                   …(6分)
解:(II)由(I)知,FH∥平面ADE,
∴点F到平面ADE的距离等于点H到平面ADE的距离,…(7分)
∵底面ABCD是正方形,侧面PCD⊥底面ABCD,
∴AD⊥侧面PDC,
即AD⊥侧面DEH,
∴AD⊥DE,
${V_{A-DEH}}=\frac{1}{3}•{S_{DEH}}•AD$,
在三棱锥H-ADE中,设点H到平面ADE的距离为d,则${V_{H-ADE}}=\frac{1}{3}•{S_{ADE}}•d$,…(9分)
由于VH-ADE=VA-DEH
∴$\frac{1}{3}•{S_{DEH}}•AD$=$\frac{1}{3}•{S_{ADE}}•d$,
∴DH•EH•AD=AD•DE•d,
∴$\frac{1}{2}•\frac{{\sqrt{3}}}{2}•2$=2•1•d,…(11分)
∴$d=\frac{{\sqrt{3}}}{4}$,
即点F到平面ADE的距离为$\frac{{\sqrt{3}}}{4}$.                          …(12分)

点评 本题考查线面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知曲线C的参数方程为$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($θ-\frac{π}{3}$)=2.
(1)试写出直线l与曲线C的直角坐标方程;
(2)若过点E(3,0)与直线l平行的直线1′与曲线C交于A、B两点,试求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥A-BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.
(Ⅰ)求证:EM∥平面ABC.
(Ⅱ)若CD=2BE=2,求点D到平面EMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,圆O的直径AB长度为10,CD是点C处的切线,AD⊥CD,若BC=8,则CD=(  )
A.$\frac{15}{2}$B.$\frac{40}{3}$C.$\frac{18}{5}$D.$\frac{24}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,点A(3,$\frac{π}{4}$),B(4,$\frac{5π}{4}$),则点C的极坐标可以是(  )
A.(0,0)B.(π,-π)C.(2,$\frac{π}{4}$)D.(π,-$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,三棱柱ABC-A1B1C1为正三棱柱,BC=CC1=4,D是A1C1中点.
(Ⅰ)求证:A1B∥平面B1CD;
(Ⅱ)求点B到平面B1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x>0,函数y=x+$\frac{9}{x}$的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在极坐标平面内,点M($\frac{π}{3}$,200π),N(-$\frac{π}{3}$,201π),G(-$\frac{π}{3}$,-200π),H(2π+$\frac{π}{3}$,200π)中互相重合的两个点是(  )
A.M和NB.M和GC.M和HD.N和H

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{-x}-2,x≤0}\\{2ax-1,x>0}\end{array}\right.$(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在($\frac{1}{2}$,+∞)上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
其中正确命题的序号是①④.

查看答案和解析>>

同步练习册答案