分析 (1)设AB=AC=AP=1,求出BC=$\sqrt{3}$,推导出△NBA∽△ABC,取AB中点Q,推导出AB⊥平面MNQ,由此能证明AB⊥MN;
(2)过B作BD∥AC,交AN延长线于D,连PD,分别取PD、AD中点E、F,连ME,EF,MF,推导出∠EFM是所求两面角的平面角.由此能求出平面MAN与平面PAN所成的锐二面角的余弦值.
解答 证明:(1)设AB=AC=AP=1,又∠BAC=120°,![]()
∴在△ABC中,BC2=1+1-2×1×1×cos120°=3,
∴BC=$\sqrt{3}$,∴BN=$\frac{\sqrt{3}}{3}$,
∴$\frac{AB}{BC}=\frac{BN}{AB}$,
又∠ABC=∠NBA,∴△NBA∽△ABC,
且△NBA也为等腰三角形.
取AB中点Q,连接MQ、NQ,∴NQ⊥AB,MQ∥PAQ,
∵PA⊥面ABC,∴PA⊥AB,∴MQ⊥AB,
∴AB⊥平面MNQ,
又MN?平面MNQ,∴AB⊥MN;
(2)解:过B作BD∥AC,交AN延长线于D,连PD,分别取PD、AD中点E、F,连ME,EF,MF,
由CA⊥面PAD,BD∥AC∥ME,PA⊥AN,EF∥PA,则ME⊥面PAD,EF⊥AN,
且MF⊥AN,∴∠EFM是所求两面角的平面角.
BD=$\frac{1}{2}$AC=$\frac{1}{2}$,ME=$\frac{1}{2}$BD=$\frac{1}{4}$,EF=$\frac{1}{2}$PA=$\frac{1}{2}$,MF=$\frac{\sqrt{3}}{4}$,
∴cos∠EFM=$\frac{2\sqrt{5}}{5}$.
∴平面MAN与平面PAN所成的锐二面角的余弦值为$\frac{2\sqrt{5}}{5}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{2}$ | B. | $\frac{40}{3}$ | C. | $\frac{18}{5}$ | D. | $\frac{24}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M和N | B. | M和G | C. | M和H | D. | N和H |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com