分析 (1)先以CB为x轴,CC1为y轴,CA为z轴建立空间直角坐标系,然后分别确定点B、M、D的坐标,利用向量法有证明CD⊥平面BDM.
(2)由CD⊥平面BDM利用面面垂直的判定定理得到面A1CB⊥平面BDM.
(3)求出平面BDC的法向量和平面B1BD的法向量,利用向量法能求出二面角B1-BD-C的平面角的余弦值.
(4)求出平面A1CB的法向量,利用向量法能求出直线BM与平面A1CB成角正切值
(5)求出平面BDM的一个法向量,$\overrightarrow{BA}$,由此能求出点A到面BDM的距离.
解答 证明:(1)由题意知AC、BC、CC1两两垂直,![]()
则以CB为x轴,CC1为y轴,CA为z轴建立空间直角坐标系.
∵CB=$\sqrt{2}$,CC1=AA1=1,CA=1,M为B1C1的中点.
∴B($\sqrt{2}$,0,0),M($\frac{\sqrt{2}}{2}$,1,0),
又∵点D是矩形AA1B1B的两条对角线的交点,
∴D($\frac{\sqrt{2}}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),
则$\overrightarrow{CD}$=($\frac{\sqrt{2}}{2},\frac{1}{2},\frac{1}{2}$),$\overrightarrow{BM}$=(-$\frac{\sqrt{2}}{2}$,1,0),$\overrightarrow{BD}$=(-$\frac{\sqrt{2}}{2}$,$\frac{1}{2},\frac{1}{2}$),
∴$\overrightarrow{CD}$•$\overrightarrow{BM}$=-$\frac{1}{2}+\frac{1}{2}=0$,$\overrightarrow{CD}•\overrightarrow{BD}$=-$\frac{1}{2}+\frac{1}{4}+\frac{1}{4}$=0,
∴CD⊥BM,CD⊥BD,
又BM∩BD=B,∴CD⊥平面BDM.
(2)∵CD⊥平面BDM,CD?平面A1CB,
∴面A1CB⊥平面BDM.
解:(3)$\overrightarrow{CD}$=($\frac{\sqrt{2}}{2},\frac{1}{2},\frac{1}{2}$),$\overrightarrow{CB}$=($\sqrt{2},0,0$),
设平面BDC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=\frac{\sqrt{2}}{2}x+\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=\sqrt{2}x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-1),
B1($\sqrt{2}$,1,0),$\overrightarrow{BD}$=(-$\frac{\sqrt{2}}{2}$,$\frac{1}{2},\frac{1}{2}$),$\overrightarrow{B{B}_{1}}$=(0,1,0),
设平面B1BD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=-\frac{\sqrt{2}}{2}a+\frac{1}{2}b+\frac{1}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{B{B}_{1}}=b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,$\sqrt{2}$),
设二面角B1-BD-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∴二面角B1-BD-C的平面角的余弦值为$\frac{\sqrt{3}}{3}$.
(4)A1(0,1,1),$\overrightarrow{C{A}_{1}}$=(0,1,1),$\overrightarrow{CB}$=($\sqrt{2},0,0$),$\overrightarrow{BM}$=(-$\frac{\sqrt{2}}{2}$,1,0),
设平面A1CB的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{C{A}_{1}}=y+z=0}\\{\overrightarrow{p}•\overrightarrow{CB}=\sqrt{2}x=0}\end{array}\right.$,取y=1,得$\overrightarrow{p}$=(0,1,-1),
设直线BM与平面A1CB成角为β,
sinβ=$\frac{|\overrightarrow{BM}•\overrightarrow{p}|}{|\overrightarrow{BM}|•|\overrightarrow{p}|}$=$\frac{1}{\sqrt{\frac{3}{2}}•\sqrt{2}}$=$\frac{1}{\sqrt{3}}$,cosβ=$\sqrt{1-(\frac{1}{\sqrt{3}})^{2}}$=$\frac{\sqrt{2}}{\sqrt{3}}$,tanβ=$\frac{sinβ}{cosβ}$=$\frac{\sqrt{2}}{2}$,
∴直线BM与平面A1CB成角正切值为$\frac{\sqrt{2}}{2}$.
(5)∵CD⊥平面BDM,∴平面BDM的一个法向量为$\overrightarrow{CD}$=($\frac{\sqrt{2}}{2},\frac{1}{2},\frac{1}{2}$)
A(0,0,1),$\overrightarrow{BA}$=(-$\sqrt{2}$,0,1),
∴点A到面BDM的距离d=$\frac{|\overrightarrow{BA}•\overrightarrow{CD}|}{|\overrightarrow{CD}|}$=$\frac{\frac{1}{2}}{\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{4}}}$=$\frac{1}{2}$.
∴点A到面BDM的距离为$\frac{1}{2}$.
点评 本题考查线面垂直、面面垂直的证明,考查二面角的平面角的余弦值的求法,考查直线与平面所成角正切值的求法,考查点到的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com