精英家教网 > 高中数学 > 题目详情
10.在平面直接坐标系中,若P(x,y)满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,则当xy取得最大值时,点P的坐标是$(\frac{5}{2},5)$.

分析 画出满足条件的平面区域,问题转化为z=x(10-2x)=-2x2+10x(2≤x≤4),求出函数的最值即可.

解答 解:画出满足条件的平面区域,如图示:

令z=xy,由可行域可知其在第一象限,
故z=xy可看成从点P(x,y)向x轴,y轴引垂线段,所围成矩形的面积,
故其可能取最大值的位置应在线段2x+y=10(2≤x≤4)上,
z=x(10-2x)=-2x2+10x(2≤x≤4),
当$x=\frac{5}{2},y=5$时z取最大值,此时$P(\frac{5}{2},5)$.

点评 本小题是线性规划的简单应用,对可行域的求取、对目标函数的理解都是考生必须掌握的基本技能.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:选择题

若集合,则元素的个数为( )

A.2 B.4

C.5 D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l1:12x-5y+15=0和l2:x=-2,点P为抛物线y2=8x上的动点,则点P到直线l1和直线l2的距离之和的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤4\\ y≥1\end{array}$,且z=$\frac{1}{2}$x+y的最大值是M,最小值是m,若 Ma+mb=3(a,b均为正实数),则$\frac{2}{a}$+$\frac{1}{b}$的最小值为(  )
A.4B.$\frac{9}{2}$C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x•e|x|的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=sin(2x-ϕ)(0<ϕ<π)的图象沿x轴向左平移$\frac{π}{6}$个单位后得到的图象关于原点对称,则ϕ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an
(Ⅲ)若数列$\left\{{\frac{b_n}{a_n}}\right\}$是首项为1,公差为2的等差数列,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个交点与抛物线y2=8x的焦点重合,且双曲线的离心率等于$\sqrt{2}$,则该双曲线的方程为(  )
A.x2-y2=4B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1D.x2-y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}为等差数列且公差d≠0,其首项a1=20,且a3,a7,a9成等比数列,Sn为{an}的前n项和,n∈N*,则S10的值为(  )
A.-110B.-90C.90D.110

查看答案和解析>>

同步练习册答案