【题目】已知数列
中,
,
.
(Ⅰ)证明数列
是等比数列;
(Ⅱ)若
是数列
的前
项和,求
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2
,BC=4
,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点
,一个焦点为
的椭圆被直线
截得的弦的中点的横坐标为
.
(1)求此椭圆的方程;
(2)设直线
与椭圆交于
两点,且以
为对角线的菱形的一个顶点为
,求
面积的最大值及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果
的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.给出下列命题:
①函数
具有“
性质”;
②若奇函数
具有“
性质”,且
,则
;
③若函数
具有“
性质”,图象关于点
成中心对称,且在
上单调递减,则
在
上单调递减,在
上单调递增;
④若不恒为零的函数
同时具有“
性质”和“
性质”,且函数
对
,都有
成立,则函数
是周期函数.
其中正确的是__________(写出所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校组织的高二女子排球比赛中,有
、
两个球队进入决赛,决赛采用7局4胜制.假设
、
两队在每场比赛中获胜的概率都是
.并记需要比赛的场数为
.
(Ⅰ)求
大于4的概率;
(Ⅱ)求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+1+|3-x|,x≥-1.
(1)求不等式f(x)≤6的解集;
(2)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为偶函数,且函数
图象的两相邻对称轴间的距离为
.
(1)求
的值;
(2)将函数
的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的
倍,纵坐标不变,得到函数
的图象,求
的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com