【题目】如图所示,在几何体
中,四边形
是菱形,
平面
,
,且
,
.
(1)证明:平面
平面
;
(2)若二面角
是直二面角,求异面直线
与
所成角的余弦值.
![]()
【答案】(1)见解析;(2)![]()
【解析】
(1)通过证明
,
,证明
平面
,再得到平面
⊥平面
.
(2)以
为
轴和
轴,建立空间直角坐标系
,设
,求出平面
的法向量
和平面
的法向量
,利用二面角
是直二面角求出
,得到
与
的坐标,利用向量夹角公式,得到答案.
(1)证明:
四边形
是菱形,![]()
平面
,
而![]()
平面
,
平面
,
平面
⊥平面
(2)设
与
的交点为
,由(1)得
,
如图:分别以
为
轴和
轴,过点
作垂直于平面
的直线为
轴,建立如图所示的空间直角坐标系
.设
,
则
,
,
,
.
设
是平面
的法向量,则
,
即
,
令
,
平面AEF的一个法向量为
同理设
,是平面
的法向量,则
得平面
的一个法向量为
,
二面角
是直二面角,
,
.
,![]()
设异面直线
与
所成角为![]()
![]()
故所求异面直线
与
所成角为的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求
的最小正周期;
(2)求
的值域;
(3)求
的递增区间
(4)求
的对称轴;
(5)求
的对称中心;
(6)
的三边a,b,c满足
,且b所对的角为x,求x的取值范围及函数
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
①试说明上述监控生产过程方法的合理性;
②下面是检验员在一天内抽取的16个零件的尺寸:
![]()
经计算得
=
=9.97,s=
=
≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数
作为μ的估计值
,用样本标准差s作为σ的估计值
,,利用估计值判断是否需对当天的生产过程进行检查?剔除(
﹣3
+3
)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,
≈0.09.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动点
到定点
的距离比它到
轴的距离大
,记点
的轨迹为曲线
.
(1)求点
的轨迹方程;
(2)若圆心在曲线
上的动圆
过点
,试证明圆
与
轴必相交,且截
轴所得的弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为:
.
(1)把直线
的参数方程化为极坐标方程,把曲线
的极坐标方程化为普通方程;
(2)求直线
与曲线
交点的极坐标(
≥0,0≤
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是( )
![]()
①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加
②2013-2018年这6年中,2016年中国到“一带一路”沿线国家的游客人次增幅最小
③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
:
的离心率为
,抛物线
:
截
轴所得的线段长等于
.
与
轴的交点为
,过点
作直线
与
相交于点
直线
分别与
相交于
.
(1)求证:
;
(2)设
,
的面积分别为
,若
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com