精英家教网 > 高中数学 > 题目详情
⊙O的两条弦AB、CD相交于点P,已知AP=2cm,BP=6cm,CP:PD=1:3,则CD=______.
∵⊙O的两条弦AB、CD相交于点P,
∴PA×PB=PC×PD,
又∵AP=2cm,BP=6cm,CP:PD=1:3,
∴设PC=x,PD=3x,可得2×6=3x2,解之得x=2(舍负)
因此CD=4x=8.
故答案为:8
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估计该校学生每周平均体育运动时间超过4小时的概率;

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图所示,从Rt△ABC的两直角边AB,AC向外作正方形ABFG及ACDE,CF,BD分别交AB,AC于P,Q.求证:AP=AQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,AE切⊙D于点E,AC=CD=DB=10,则线段AE的长为(  )
A.10
2
B.16C.10
3
D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

选修4-1:几何证明选讲
如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.
(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,ACDE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)(不等式选讲)已知函数f(x)=log2(|x-1|+|x-5|-a),当函数f(x)的定义域为R时,则实数a的取值范围为______
(2)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为______.

(3)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)一工厂生产甲、乙、丙三种样式的杯子,每种样式均有两种型号,某天的产量如右表(单位:个):按样式分层抽样的方法在这个月生产的杯子中抽取个,其中有甲样式杯子个.
型号
甲样式
乙样式
丙样式








 
(1)求的值; 
(2)用分层抽样的方法在甲样式杯子中抽取一个容量为的样本,从这个样本中任取个杯子,求至少有杯子的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在△ABC中,DE∥BC,DF∥AC,AE:AC=3:5,DE =6,则
|PF|有取值范围为           

查看答案和解析>>

同步练习册答案