精英家教网 > 高中数学 > 题目详情
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,ACDE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
(Ⅰ)∵ACDE,直线DE为圆O的切线,∴D是弧
AC
的中点,即
AD
=
DC

又∠ABD,∠DBC与分别是两弧
AD
DC
所对的圆周角,故有∠ABD=∠DBC,
所以BD平分∠ABC
(Ⅱ)∵由图∠CAB=∠CDB且∠ABD=∠DBC
∴△ABH△DBC,∴
AH
CD
=
AB
BD

AD
=
DC

∴AD=DC,
AH
AD
=
AB
BD

∵AB=4,AD=6,BD=8
∴AH=3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBlAC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
3
5
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APD的值为(  )
A.
1
3
B.
2
3
C.
2
3
D.
2
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

⊙O的两条弦AB、CD相交于点P,已知AP=2cm,BP=6cm,CP:PD=1:3,则CD=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,PC与圆O相切于点C,直线PO交圆O于A,B两点,弦CD垂直AB于E.则下面结论中,错误的结论是(  )
A.△BEC△DEAB.∠ACE=∠ACPC.DE2=OE•EPD.PC2=PA•AB

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知圆O1与圆O2外切于点P,直线AB是两圆的外公切线,分别与两圆相切于A、B两点,AC是圆O1的直径,过C作圆O2的切线,切点为D.
(Ⅰ)求证:C,P,B三点共线;
(Ⅱ)求证:CD=CA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,……,,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为 ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2012·四川高考]交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(  )
A.101B.808C.1212D.2012

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本试卷共40分,考试时间30分钟)
21.(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的半⊙O交于点,延长
(1)求证:的中点;(2)求线段的长.

查看答案和解析>>

同步练习册答案