精英家教网 > 高中数学 > 题目详情
13.如图,函数y=f(x)的图象为折线ABC,设g(x)=f[f(x)],则函数y=g(x)的图象为(  )
A.B.C.D.

分析 函数y=f(x)的图象为折线ABC,其为偶函数,所研究x≥0时g(x)的图象即可,首先根据图象求出x≥0时f(x)的图象及其值域,再根据分段函数的性质进行求解,可以求出g(x)的解析式再进行判断.

解答 解:如图:函数y=f(x)的图象为折线ABC,函数f(x)为偶函数,
我们可以研究x≥0的情况即可,
若x≥0,可得B(0,1),C(1,-1),这直线BC的方程为:lBC:y=-2x+1,x∈[0,1],其中-1≤f(x)≤1;
若x<0,可得lAB:y=2x+1,∴f(x)=$\left\{\begin{array}{l}{-2x+1,0≤x≤1}\\{2x+1,-1≤x<0}\end{array}\right.$,
我们讨论x≥0的情况:如果0≤x≤$\frac{1}{2}$,解得0≤f(x)≤1,此时g(x)=f[f(x)]=-2(-2x+1)+1=4x-1;
若$\frac{1}{2}$<x≤1,解得-1≤f(x)<0,此时g(x)=f[f(x)]=2(-2x+1)+1=-4x+3;
∴x∈[0,1]时,g(x)=$\left\{\begin{array}{l}{4x-1,0≤x≤\frac{1}{2}}\\{-4x+3,\frac{1}{2}<x≤1}\end{array}\right.$;
故选:A

点评 本题主要考查分段函数的定义域和值域以及复合函数的解析式求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若点P(x,y)的坐标x,y满足约束条件:$\left\{\begin{array}{l}x+y-6≤0\\ x-y+1≥0\\ x≥1\\ y≥1\end{array}\right.$,则$\frac{3x-4y}{5}$的最大值为(  )
A.$-\frac{1}{5}$B.-1C.$\frac{11}{5}$D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i为虚数单位,则  $\frac{1}{i}+{i^{2015}}$=(  )
A.0B.2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C相交于A、B两点,则|OA|2+|OB|2(O为坐标原点)的最小值为(  )
A.4B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=-x2+ax-b,若a,b都是从区间[0,3]任取的一个数,则f(1)>0成立的概率是(  )
A.$\frac{2}{9}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a1=7,公差d$∈(-1,-\frac{7}{8})$,则其前n项和Sn的最大值为(  )
A.S6B.S7C.S8D.S9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用数学归纳法证明:求1-3+5-7+…+(-1)n-1(2n-1)=(-1)n+1n(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=($\frac{3}{4}$)${\;}^{\frac{2}{3}}$,b=($\frac{2}{3}$)${\;}^{\frac{3}{4}}$,c=log${\;}_{\frac{2}{3}}$$\frac{4}{3}$,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>cC.c>b>aD.b>c>a

查看答案和解析>>

同步练习册答案