精英家教网 > 高中数学 > 题目详情

【题目】某中学旅游局欲将一块长20百米,宽10百米的矩形空地ABCD建成三星级乡村旅游园区,园区内有一景观湖EFG(如图中阴影部分)以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy,O为园区正门,园区北门P在y正半轴上,且PO=10百米。景观湖的边界线符合函数的模型。

(1)若建设一条与AB平行的水平通道,将园区分成面积相等的两部分,其中湖上的部分建成玻璃栈道,求玻璃栈道的长度。

(2)若在景观湖边界线上一点M修建游船码头,使得码头M到正门O的距离最短,求此时M点的横坐标。

(3)设图中点B为仓库所在地,现欲在线段OB上确定一点Q建货物转运站,将货物从点B经Q点直线转运至点P(线路PQ不穿过景观湖),使货物转运距离QB+PQ最短,试确定点P的位置。

【答案】(1)玻璃栈道的长度为3百米.

(2).

(3) 当点在线段上且与点O的距离为百米时,最短.

【解析】

分析:(1)根据题意,建立相应的等量关系式,求得结果;

(2)利用两点间的距离公式,列出对应的式子,之后应用基本不等式求得最值;

(3)将两条线段的长度和化为关于坐标的关系式,结合性质,求得最值.

详解:(1),即,解得:4

则玻璃栈道的长度

∴玻璃栈道的长度为3百米.

(2),其中

,当且仅当时,即时取等号.

取最小值时M点的横坐标为

(3)设

轴正半轴上,且PO=10 又∵

上单调减

∴点越靠近点越短

∵路线PQ不穿过景观湖 ∴当直线与边界曲线相切时,最短.

设切点为

∴切线的方程为

∵切线过点,解得:

∴切线方程为:

,得,即点在线段上且与点O的距离为百米.

答:当点在线段上且与点O的距离为百米时,最短.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于任意,若数列满足,则称这个数列为“数列”.

(1)已知数列:是“数列”,求实数的取值范围;

(2)已知等差数列的公差,前项和为,数列是“数列”,求首项的取值范围;

(3)设数列的前项和为,且. 设,是否存在实数,使得数列为“数列”. 若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当a=1时,求函数f(x)的单调区间;

(2)若恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数既是奇函数又在(﹣11)上是减函数的是(  )

A. B.

C. yx1D. ytanx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC和△A1B1C1满足sinA=cosA1 , sinB=cosB1 , sinC=cosC1
(1)求证:△ABC是钝角三角形,并求最大角的度数;
(2)求sin2A+sin2B+sin2C的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x﹣1)2+y2=1.直线l经过点P(m,0),且倾斜角为 .以O为极点,以x轴正半轴为极轴,建立坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列{bn}满足:bn+12bn+2,且an+1anbn

1)求证:数列{bn+2}是等比数列;

2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人玩抽红包游戏,现将装有5元、3元、2元的红包各3个,放入一不透明的暗箱中并搅拌均匀,供3人随机抽取. (Ⅰ)若甲随机从中抽取3个红包,求甲抽到的3个红包中装有的金额总数小于10元的概率.
(Ⅱ)若甲、乙、丙按下列规则抽取:
①每人每次只抽取一个红包,抽取后不放回;
②甲第一个抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次轮流;
③一旦有人抽到装有5元的红包,游戏立即结束.
求甲抽到的红包的个数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (I)求函数f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的对边分别为a,b,c,已知 ,求a,b的值.

查看答案和解析>>

同步练习册答案