| A. | (-∞,-$\frac{2}{3}$] | B. | (-∞,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,+∞) | D. | [-$\frac{1}{3}$,+∞] |
分析 由已知函数g(x)=loga(x2+x+2)(a>0,且a≠1)在[-$\frac{1}{4}$,1]上的最大值为2,先求出a值,进而求出两个函数在指定区间上的最小值,结合已知,分析两个最小值的关系,可得答案.
解答 解:∵函数f(x)=$\frac{3-m•{3}^{x}}{{3}^{x}}$=31-x-m,
当x1∈[-1,2]时,f(x1)∈[$\frac{1}{3}$-m,9-m];
∵t=x2+x+2的图象是开口朝上,且以直线x=-$\frac{1}{2}$为对称轴的抛物线,
故x∈[-$\frac{1}{4}$,1]时,t∈[$\frac{29}{16}$,4],
若函数g(x)=loga(x2+x+2)(a>0,且a≠1)在[-$\frac{1}{4}$,1]上的最大值为2,
则a=2,
即g(x)=log2(x2+x+2),
当x2∈[0,3]时,g(x2)∈[1,log214],
若对任意x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),
则$\frac{1}{3}$-m≥1,
解得m∈(-∞,-$\frac{2}{3}$],
故选:A.
点评 本题考查的知识点是二次函数的图象和性质,指数函数的图象和性质,对数函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | {-2,4} | B. | {-2,0,4} | C. | {-2,0,2,4} | D. | {-4,-2,0,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com