分析 (1)设出直线方程,代入椭圆方程,解方程可得交点坐标,由两点 的距离公式即可得到弦长;
(2)运用点差法,求得直线的斜率,即可得到直线方程.
解答 解:(1)直线l的方程为y-2=$\frac{1}{2}$(x-4),即为y=$\frac{1}{2}$x,
代入椭圆方程x2+4y2=36,可得
x=±3$\sqrt{2}$,y=±$\frac{3\sqrt{2}}{2}$.
即有|AB|=$\sqrt{(6\sqrt{2})^{2}+(3\sqrt{2})^{2}}$=3$\sqrt{10}$;
(2)由P的坐标,可得$\frac{16}{36}$+$\frac{4}{9}$<1,可得P在椭圆内,
设A(x1,y1),B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{36}$+$\frac{{{y}_{1}}^{2}}{9}$=1,①$\frac{{{x}_{2}}^{2}}{36}$+$\frac{{{y}_{2}}^{2}}{9}$=1,②
由中点坐标公式可得x1+x2=8,y1+y2=4,③
由①-②可得,$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{36}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0,④
将③代入④,可得
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
则所求直线的方程为y-2=-$\frac{1}{2}$(x-4),
即为x+2y-8=0.
点评 本题考查直线和椭圆的位置关系,考查弦长和直线方程的求法,注意运用联立方程和点差法的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$>$\frac{1}{b}$ | B. | $\frac{b}{a}$>1 | C. | a2<b2 | D. | ab<a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{2}{3}$] | B. | (-∞,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,+∞) | D. | [-$\frac{1}{3}$,+∞] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |λ$\overrightarrow{a}$|=|λ|$\overrightarrow{a}$ | B. | |λ$\overrightarrow{a}$|=λ|$\overrightarrow{a}$| | C. | 若$\overrightarrow{a}$=$\overrightarrow{0}$,则λ$\overrightarrow{a}$=$\overrightarrow{0}$ | D. | (λ-2)$\overrightarrow{a}$=$λ\overrightarrow{a}$+2$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com