精英家教网 > 高中数学 > 题目详情
19.如图:点P在直径AB=1的半圆上移动(点P不与A,B重合),过P作圆的切线PT且PT=1,∠PAB=α,
(1)当α为何值时,四边形ABTP面积最大?
(2)求|PA|+|PB|+|PC|的取值范围?

分析 (1)由AB为圆的直径,利用圆周角定理得到∠APB为直角,再由AB=1,表示出PA与PB,根据PT与圆相切,表示出BC,进而表示出四边形ABTP的面积,整理后,利用正弦函数的值域及二次函数性质确定出最大值即可;
(2)把表示出的PA,PB,PC代入所求式子,设t=cosα+sinα,可得出t2=1+2cosαsinα,进而表示出cosαsinα,代入所求式子整理为一个角的正弦函数,利用正弦函数的值域及二次函数性质确定出范围即可.

解答 解:(1)∵AB为直径,
∴∠APB=90°,AB=1,
∵∠PAB=α,
∴PA=cosα,PB=sinα,
又PT切圆于P点,∠TPB=∠PAB=α,
∴BC=sinα•PB=sin2α,
∴S四边形ABTP=S△PAB+S△TPB
=$\frac{1}{2}$PA•PB+$\frac{1}{2}$PT•BC
=$\frac{1}{2}$sinαcosα+$\frac{1}{2}$sin2α
=$\frac{1}{4}$sin2α+$\frac{1}{4}$(1-cos2α)
=$\frac{1}{4}$(sin2α-cos2α)+$\frac{1}{4}$
=$\frac{\sqrt{2}}{4}$sin(2α-$\frac{π}{4}$)+$\frac{1}{4}$,
∵0<α<$\frac{π}{2}$,-$\frac{π}{4}$<2α-$\frac{π}{4}$<$\frac{3}{4}$π,
∴当2α-$\frac{π}{4}$=$\frac{π}{2}$,即α=$\frac{3}{8}$π时,S四边形ABTP最大;
(2)|PA|+|PB|+|PC|=cosα+sinα+sinαcosα,
设t=cosα+sinα,则t2=cos2α+sin2α+2cosαsinα=1+2cosαsinα,
∴cosαsinα=$\frac{{t}^{2}-1}{2}$,
∴|PA|+|PB|+|PC|=$\frac{{t}^{2}-1}{2}$+t=$\frac{{t}^{2}}{2}$+t-$\frac{1}{2}$,
∵t=cosα+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(1,$\sqrt{2}$],且t=-1∉(1,$\sqrt{2}$],
∴|PA|+|PB|+|PC|=$\frac{{t}^{2}}{2}$+t-$\frac{1}{2}$在t∈(1,$\sqrt{2}$]时单调递增,
则(|PA|+|PB|+|PC|)∈(1,$\frac{1}{2}$+$\sqrt{2}$].

点评 此题考查了与圆有关的比例线段,正弦函数的定义域与值域,两角和与差的正弦函数公式,以及二次函数性质,熟练掌握三角函数的恒等变换是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆1千克,则共需油漆的总量(单位:千克)为(  )
A.48+24πB.39+24πC.39+36πD.48+30π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以O为圆心的圆与直线x-$\sqrt{3}$y=4相切,直线l:y=kx+1与圆O交于P、Q两点.
(1)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求实数k的值;
(2)过点(0,1)作直线l1与l垂直,且直线l2与圆O交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的像f(x)使得x+f(x)为偶数,这样的映射有12个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的导函数f'(x)满足2f(x)+xf′(x)>x2(x∈R),则对?x∈R都有(  )
A.x2f(x)≥0B.x2f(x)≤0C.x2[f(x)-1]≥0D.x2[f(x)-1]≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-mx2(m∈R).
(Ⅰ)当m=2时,求函数f(x)的单调区间.
(Ⅱ)当m<0时,是否存在实数x1,x2(0<x1<x2),使得当x∈[x1,x2]时,函数  f(x)的值域是[ax12-1,ax22-1](a∈R)?若存在,求出实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2面积的最大值为$\sqrt{3}$.
(1)求椭圆的方程;
(2)已知直线l与椭圆交于点A,B,且直线l的方程为y=kx+$\sqrt{3}$(k>0),若O为坐标原点,求△OAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设点P,Q分别是曲线y=x+lnx和直线y=2x+2的动点,则|PQ|的最小值为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出S=(  )
A.14B.16C.30D.62

查看答案和解析>>

同步练习册答案