精英家教网 > 高中数学 > 题目详情
8.已知f(x)=$\left\{\begin{array}{l}{-lnx-x,x>0}\\{-ln(-x)+x,x<0}\end{array}\right.$,则关于m的不等式f($\frac{1}{m}$)<ln$\frac{1}{2}-2$的解集为(  )
A.(0,$\frac{1}{2}$)B.(0,2)C.(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.(-2,0)∪(0,2)

分析 可判断f(x)是(-∞,0)∪(0,+∞)上的偶函数,再由函数的单调性解不等式.

解答 解:当x>0时,f(-x)=-ln(-(-x))-x=-lnx-x=f(x),
故f(x)是(-∞,0)∪(0,+∞)上的偶函数;
当x>0时,f(x)=-lnx-x为减函数,
而ln$\frac{1}{2}-2$=-ln2-2=f(2),
故f($\frac{1}{m}$)<ln$\frac{1}{2}-2$=f(2),
故$\frac{1}{m}$>2,
故0<m<$\frac{1}{2}$;
由f(x)是(-∞,0)∪(0,+∞)上的偶函数知,
-$\frac{1}{2}$<m<0;
综上所述,m∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$),
故选C.

点评 本题考查了分段函数的性质的判断与应用,同时考查了分类讨论的思想方法应用.

练习册系列答案
相关习题

科目:高中数学 来源:2017届四川巴中市高中高三毕业班10月零诊理数试卷(解析版) 题型:选择题

为虚数单位,则的展开式中含的项为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集全A=$\{x∈Z|0≤x≤5\},B=\{x|x=\frac{k}{2},k∈A\;\}$,则集合A∩B=(  )
A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为(  )
A.(1,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数i2(1+i)的实部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线y2=x上一点M到焦点的距离为1,则点M的横坐标是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知抛物线C:y2=2px(p>0)的焦点为F,过点F垂直于x轴的直线与抛物线C相交于A,B两点,抛物线C在A,B两点处的切线及直线AB所围成的三角形面积为4.
(1)求抛物线C的方程;
(2)设M,N是抛物线C上异于原点O的两个动点,且满足kOM•kON=kOA•kOB,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设α,β为两个不重合的平面,m,n是两条不重合的直线,α⊥β,α∩β=m,则以下说法正确的是(  )
A.若m⊥n,则n⊥βB.若m⊥n,n?α,则n⊥βC.若m∥n,则n∥βD.若m∥n,则n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y,z>0,且x+y+z=6,则lgx+lgy+lgz的取值范围是(  )
A.(-∞,lg6]B.(-∞,3lg2]C.[lg6,+∞)D.[3lg2,+∞)

查看答案和解析>>

同步练习册答案