精英家教网 > 高中数学 > 题目详情
16.“0<a<b”是“($\frac{1}{4}$)a>($\frac{1}{4}$)b”的充分不必要条件.(填充分而不必要条件、必要而不充分件、充分条件、既不充分也不必要条件中一个)

分析 根据指数函数的性质先求出a<b,再根据充分必要条件的定义判断即可.

解答 解:由($\frac{1}{4}$)a>($\frac{1}{4}$)b得:a<b,
故0<a<b是a<b的充分不必要条件,
故答案为:充分不必要.

点评 本题考查了充分必要条件,考查指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,已知sinA=10sinBsinC,cosA=10cosBcosC,则tanA=11;sin2A=$\frac{11}{61}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,角A,B,C所对的边分别为a,b,c,且满足$sinA(sinB+\sqrt{3}cosB)=\sqrt{3}sinC$.
(1)求角A的大小;    
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)设U=R,A={x|-2≤x<4},B={x|8-2x≥3x-7},求(∁UA)∩(∁UB).
(Ⅱ)已知集合A={x|3x-4≤0},B={x|x-m<0},且A∩B=B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(0≤x≤π)$的值域是(  )
A.$[-1,\frac{{\sqrt{3}}}{2}]$B.[-1,1]C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{{\sqrt{3}}}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an}是递增的等差数列,a1=2,${a_3}^2={a_4}+11$.
(Ⅰ)求数列{an}的前n项和Sn
(Ⅱ)若bn=an•(2n-5),求数列{bn}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-a|+|x-5|.
(1)若不等式f(x)≥3恒成立,求a的取值范围;
(2)当a=2时,求不等式f(x)≥x2-8x+15的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当且仅当        ,x2>2x>log2x.(  )
A.3<x<4B.x>4C.0<x<2D.2<x<4

查看答案和解析>>

同步练习册答案