精英家教网 > 高中数学 > 题目详情
(2013•郑州二模)在正项等比数列{an}中,a1=1,前n项和为Sn,且-a3,a2,a4成等差数列,则S7的值为(  )
分析:设出等比数列的公比,由已知条件列式求出公比,则等比数列的前7项和可求.
解答:解:设正项等比数列{an}的公比为q(q>0),且a1=1,
由-a3,a2,a4成等差数列,得2a2=a4-a3
2a1q=a1q3-a1q2
因为q>0.
所以q2-q-2=0.
解得q=-1(舍),或q=2.
S7=
a1(1-q7)
1-q
=
1•(1-27)
1-2
=127

故选C.
点评:本题考查了等比数列的通项公式,考查了等差数列的通项公式,考查了等比数列的前n项和公式,考查了学生的计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州二模)设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组
f(m2-6m+23)+f(n2-8n)<0
m>3
,那么m2+n2的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)设z=x+y,其中x,y满足
x+2y≥0
x-y≤0
0≤y≤k
,当z的最大值为6时,k的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)若x∈(e-1,1),a=lnx,b=(
1
2
)lnx
,c=elnx,则a,b,c的大小关系为(  )

查看答案和解析>>

同步练习册答案