精英家教网 > 高中数学 > 题目详情

【题目】抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上,事件B=“第二枚硬币反面朝上”.

1)写出样本空间,并列举AB包含的样本点;

2)下列结论中正确的是( .

A.AB互为对立事件 B.AB互斥 C.AB相等 D.PA=PB

【答案】1)解:样本空间可表示为Ω={(正,正),(正,反),(反,正),(反,反)}.A包含的样本点:(正,正),(正,反).B包含的样本点:(正,反),(反,反).

2D

【解析】

(1)列举出抛掷两枚质地均匀的硬币所有可能的情况,即可得出样本空间以及AB包含的样本点;

(2)利用互斥事件与对立事件的定义判断选项,由相等事件的定义判断;计算出事件的概率即可得出正确答案.

(1) 抛掷两枚质地均匀的硬币,所有可能的情况为:(正,正),(正,反),(反,正),(反,反)

则样本空间为Ω={(正,正),(正,反),(反,正),(反,反)}

A包含的样本点:(正,正),(正,反)

B包含的样本点:(正,反),(反,反)

(2)由于事件能同时发生,则事件既不互斥也不对立;

事件中有不同的样本点,则事件不相等;

,则

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点 上一动点,且在之间移动.

(1)当取最小值时,求的方程;

(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列的定义可用数学符号语言描述为_______,其中,其通项公式_________,______,等比数列中,若_________(),若,则的等比中项为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);

(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.

周一

周二

周三

周四

周五

周六

周日

13

16

26

22

25

29

30

7

11

15

22

24

27

34

(Ⅰ)作出散点图,判断哪一个适合作为每天净利润的回归方程类型?并求出回归方程(精确到);

(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为.试决策超市是否有必要开展抽奖活动?

参考数据: .

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);

(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数).

(1)若处的切线过点,求实数的值;

(2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)设集合C={x|m+1<x<2m-1},若BC=C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案