精英家教网 > 高中数学 > 题目详情

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

【答案】1;(2.

【解析】

1)利用利润总售价总成本,根据的范围分段考虑关于的解析式,注意每一段函数对应的定义域;

2)求解中的每段函数的最大值,然后两段函数的最大值作比较得到较大值,即为最大利润.

1)当时,

时,

所以

2)当时,

所以当时,(万元);

时,

取等号时,所以(万元)(万元),

所以年产量为千件时,所获利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;

2)设,试讨论的零点个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在[﹣2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1﹣m)<f(3m).

(1)若函数f(x)在区间[﹣2,2]上是奇函数,求实数m的取值范围;

(2)若函数f(x)在区间[﹣2,2]上是偶函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数g(x)=xf(x)﹣1的零点的个数为(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上,事件B=“第二枚硬币反面朝上”.

1)写出样本空间,并列举AB包含的样本点;

2)下列结论中正确的是( .

A.AB互为对立事件 B.AB互斥 C.AB相等 D.PA=PB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知直线经过点,倾斜角.设与圆相交与两点AB,求点P到两点的距离之积.

(2)在极坐标系中,圆C的方程为,直线的方程为.

①若直线过圆C的圆心,求实数的值;

②若,求直线被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数上单调递减,且,则不等式的解集________.

查看答案和解析>>

同步练习册答案