精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数上单调递减,且,则不等式的解集________.

【答案】

【解析】

根据题意,由奇函数的性质可得f(﹣3)=0,结合函数的单调性分析可得fx)>0fx)<0的解集,又由(x1fx)>0,分析可得x的取值范围,即可得答案.

根据题意,fx)为奇函数且f3)=0,则f(﹣3)=0

又由fx)在(﹣∞,0)上单调递减,则在(﹣∞,﹣3)上,fx)>0,在(﹣30)上,fx)<0

又由fx)为奇函数,则在(03)上,fx)>0,在(3+∞)上,fx)<0

fx)<0的解集为(﹣30)∪(3+∞),fx)>0的解集为(﹣∞,﹣3)∪(03);

x1fx)>0

分析可得:﹣1x01x3

故不等式的解集为(﹣30)∪(13);

故答案为(﹣30)∪(13);

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1-2020个整数中随机选择一个数,设事件A表示选到的数能被2整除,事件B表示选到的数能被3整除,求下列事件的概率;

1)这个数既能被2整除也能被3整除;

2)这个数能被2整除或能被3整除;

3)这个数既不能被2整除也不能被3整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知不单调,且其导函数存在唯一零点.

(1)求的取值范围;

(2)若集合,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)设集合C={x|m+1<x<2m-1},若BC=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

I)应收集多少位男生样本数据?

II)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,试估计该校学生每周平均体育运动时间超过4个小时的概率;

(Ⅲ)在样本数据中,有165位男生的每周平均体育运动时间超过4个小时请完成每周平均体育运动时间与性别的列联表,并判断是否有%的把握认为该校学生的每周平均体育运动时间与性别有关”.

男生

女士

总计

每周平均体育运动时

间不超过4小时

每周平均体育运动时

间超过4小时

总计

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年俄罗斯世界杯将于2018年6月14日至7月15日在俄罗斯境内座城市的座球场内举行,共有支球队参加比赛,其中欧洲有支球队参赛,中北美球队有支球队参赛,亚洲、南美洲、非洲各有支球队参赛,所有参赛球队被平均分入个小组.已知小组的支队伍来自不同的大洲,东道主俄罗斯(俄罗斯属于欧洲球队)和墨西哥(墨西哥属于中北美球队)在小组中,那么南美洲球队巴西队在小组的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:(1)正方形的四条边相等;(2)有两个角是的三角形是等腰直角三角形;(3)正数的平方根不等于0;(4)至少有一个正整数是偶数;是全称量词命题的有________;是存在量词命题的有________.(填序号)

查看答案和解析>>

同步练习册答案