精英家教网 > 高中数学 > 题目详情
求函数y=
x
x+1
的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:要求函数的定义域,只需列出满足原式的不等式组,解之即可.
解答: 解:要使原式有意义,只需x+1≠0即可,所以x≠-1.
故函数的定义域为{x|x∈R且x≠-1}.
点评:本题考查了函数定义域的求法,一般是通过列出不等式组求解即可,要注意结果是集合或区间的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a,b>0)上任一点分别作两条渐近线的平行线,则这两条直线与渐近线所围成的平行四边形的面积为
 
(用a、b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次研究性学习中,老师给出函数f(x)=
x
1+|x|
(x∈R),三位同学甲、乙、丙在研究此函数时
给出命题:你认为上述三个命题中正确的个数有(  )
甲:函数f(x)的值域为(-1,1);乙:若x1≠x2,则一定有f(x1)≠f(x2);
丙:若规定f1(x)=f(x),fn(x)=f(fn-1(x)),则fn(x)≥
x
1+n|x|
对任意n∈N*恒成立.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为异面直线,则下列命题中正确的是(  )
A、过a,b外一点P一定可以引一条与a,b都平行的直线
B、过a,b外一点P一定可以作一个与a,b都平行的平面
C、过a一定可以作一个与b平行的平面
D、过a一定可以作一个与b垂直的平面

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,O是△ABC的外接圆的圆心,M是BC边的中点,AB=4,AC=2,求
AM
AO
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:y=
10x-10-x
10x+10-x

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量1至4件5至8件9至12件13至16件17件以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中任抽1人,购物量超过8件的顾客占55%.
(Ⅰ)求x,y的值;
(2)求这100人的平均结算时间;
(3)求这100人中,结算时间不少于2分钟的概率;
(4)将这100个人的结算时间看作一个容量为100的简单随机样本,将频率视为概率,将结算时间用x表示,对应概率用P表示,完成下表:
x11.522.53
p

查看答案和解析>>

科目:高中数学 来源: 题型:

用一段长为40米的篱笆围一块矩形绿地,矩形一边长为x米,面积为y平方米,请写出y关于x的函数关系,并求它的定义域.(x为自变量)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的中心为坐标原点,经过点P(1,
6
6
),离心率e=
6
3

(1)求椭圆C的方程;
(2)是否存在过椭圆C的右焦点F且与椭圆C交于M,N两点的直线l,使得在直线x=
3
2
上可以找到一点B,满足△MNB为正三角形?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案