精英家教网 > 高中数学 > 题目详情

(06年山东卷理)下列四个命题中,真命题的序号有                  (写出所有真命题的序号).

①将函数y=的图象按向量y=(-1,0)平移,得到的图象对应的函数表达式为y=

②圆x2+y2+4x-2y+1=0与直线y=相交,所得弦长为2

③若sin(+)=,sin()=,则tancot=5

④如图,已知正方体ABCD- A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.

(16题图)

答案:③④

解析:①错误,得到的图象对应的函数表达式应为y=|x-2|

②错误,圆心坐标为(-2,1),到直线y=的距离为

>半径2,故圆与直线相离,                        

③正确,sin(+)==sincos+cossin

sin()=sincos-cossin

两式相加,得2 sincos

两式相减,得2 cossin,故将上两式相除,即得tancot=5

④正确,点P到平面AD1的距离就是点P到直线AD的距离,

                 

点P到直线CC1就是点P到点C的距离,由抛物线的定义

可知点P的轨迹是抛物线。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年山东卷理)设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相连能构成四边形,则向量d为(   )

(A)(2,6)         (B)(-2,6)         (C)(2,-6)              (D)(-2,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷理)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(   )

(A)          (B)            (C)                   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷理)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P-DCE三棱锥的外接球的体积为(    )

(A)     (B)       (C)          (D) 

(12题图)

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷理)(12分)

双曲线C与椭圆有相同的焦点,直线为C的一条渐近线。

(1)求双曲线C的方程;

(2)过点的直线,交双曲线C于A、B两点,交轴于Q点(Q点与C的顶点不重合),当,且时,求点的坐标。

查看答案和解析>>

同步练习册答案