【题目】在数列{an}中,a1=
,且前n项的算术平均数等于第n项的2n﹣1倍(n∈N*).
(1)写出此数列的前5项;
(2)归纳猜想{an}的通项公式,并用数学归纳法证明.
【答案】
(1)解:由已知
,
=(2n﹣1)an,分别取n=2,3,4,5,
得
,
,
,
;
所以数列的前5项是:
,
,
,
, ![]()
(2)解:由(1)中的分析可以猜想
(n∈N*).
下面用数学归纳法证明:
①当n=1时,猜想显然成立.
②假设当n=k(k≥1且k∈N*)时猜想成立,即
.
那么由已知,得
,
即a1+a2+a3+…+ak=(2k2+3k)ak+1.所以(2k2﹣k)ak=(2k2+3k)ak+1,
即(2k﹣1)ak=(2k+3)ak+1,又由归纳假设,得
,
所以
,即当n=k+1时,猜想也成立.
综上①和②知,对一切n∈N*,都有
成立
【解析】(1)利用数列{an}前n项的算术平均数等于第n项的2n﹣1倍,推出关系式,通过n=2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{an}的通项公式,然后用数学归纳法证明.第一步验证n=1成立;第二步,假设n=k猜想成立,然后证明n=k+1时猜想也成立.
【考点精析】认真审题,首先需要了解数学归纳法的定义(数学归纳法是证明关于正整数n的命题的一种方法).
科目:高中数学 来源: 题型:
【题目】已知映射f:A→B,其中A=B=R,对应法则f:x→y=(
)
,若对实数m∈B,在集合A中存在元素与之对应,则m的取值范围是( )
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭圆
交于
两个不同的点,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中
中,曲线
的参数方程为
为参数,
). 以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)设
是曲线
上的一个动点,当
时,求点
到直线
的距离的最大值;
(2)若曲线
上所有的点均在直线
的右下方,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=
.
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本公司计划2008年在甲,乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲,乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲,乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲,乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com