精英家教网 > 高中数学 > 题目详情
10.设过点P(-1,1)作两直线,PA,PB与抛物线y2=4x任相切于点A,B,若F为抛物线y2=4x的焦点,|$\overrightarrow{AF}$|•|$\overrightarrow{BF}$|=(  )
A.$\sqrt{15}$B.5C.8D.9

分析 求出切线AP、BP的方程,代入P点的坐标,结合韦达定理,向量的数量积公式,即可得出结论.

解答 解:设切点A、B坐标分别为($\frac{1}{4}$y02,y0)和($\frac{1}{4}$y12,y1)(y1≠y0),
∵2yy′=4,∴两切线斜率分别为:$\frac{2}{{y}_{0}}$和$\frac{2}{{y}_{1}}$,
于是:切线AP的方程为:2x-yy0+$\frac{1}{2}$y02=0
代入P点的坐标为:y02-2y0-4=0.
同理y12-2y1-4=0
由题意,y0+y1=2,y0y1=-4,
∴|$\overrightarrow{AF}$|•|$\overrightarrow{BF}$|=-(1-$\frac{1}{4}$y02,-y0)•(1-$\frac{1}{4}$y12,-y1)=-[1-$\frac{1}{4}$(y02+y12)+$\frac{1}{16}$y02y12+y0y1]=5.
故选:B.

点评 本题考查直线与抛物线的位置关系,考查韦达定理,向量的数量积公式,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,直线l过抛物线y2=4x的交点F且分别交抛物线及其准线于A,B,C,若$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,则|AB|等于(  )
A.5B.6C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.图甲是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图.

我们采用“坐标”来表示图乙各行中的白圈、黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数).比如第一行记为(0,1),第二行记为(1,2),第三行记为(4,5),照此下去,第四行中白圈与黑圈的“坐标”为(13,14),第n(n∈N*)行中白圈与黑圈的“坐标”为($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点F为抛物线E:y2=4x的焦点,点A(2,m)在抛物线E上,则|AF|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为45°的直线交C于A,B两点,若以AB为直径的圆被x轴截得的弦长为16$\sqrt{3}$,则p的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线C:y=ax2的准线方程为y=-$\frac{1}{4}$,则其焦点坐标为(0,$\frac{1}{4}$),实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax+1-2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M到准线l的距离为d,则d+|MA|的最小值为(  )
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=sin(ωx+φ-$\frac{π}{4}$)(ω>0,0<φ<$\frac{π}{2}$)为奇函数,且y=f(x)的图象与x轴的两个相邻交点之间的距离为π,设矩形区域Ω是由直线x=±$\frac{π}{2}$和y=±1所围成的平面图形,区域D是由函数y=f(x+$\frac{π}{2}$)、x=±$\frac{π}{2}$及y=-1所围成的平面图形,向区域Ω内随机地抛掷一粒豆子,则该豆子落在区域D的概率是$\frac{π+2}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在各棱长均为2的正三棱锥A-BCD中,平面α与棱AB、AD、CD、BC分别相交于点E、F、G、H,则四边形EFGH的周长的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案