精英家教网 > 高中数学 > 题目详情
已知长方形ABCD, AB=2, BC="1." 以AB的中点为原点建立如图8所示的平面直角坐标系.
(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
(Ⅰ) (Ⅱ)存在过P(0,2)的直线:使得以弦MN为直径的圆恰好过原点
(Ⅰ)由题意可得点A,B,C的坐标分别为.……1分
设椭圆的标准方程是.……2分
……4分
.……5分
椭圆的标准方程是……6分
(Ⅱ)由题意直线的斜率存在,可设直线的方程为.……7分
设M,N两点的坐标分别为
联立方程: 
消去整理得,
……9分
若以MN为直径的圆恰好过原点,则,所以,……10分
所以,,

所以,
……11分  得……12分
所以直线的方程为,或.……13分
所以存在过P(0,2)的直线:使得以弦MN为直径的圆恰好过原点. ……14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆E:(其中),直 线L与椭圆只有一个公共点T;两条平行于y轴的直线分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.

(Ⅰ)若直线L在轴上的截距为,求证:直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若的最大值为1200,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且
(I)求证:切线l的斜率为定值;
(Ⅱ)若抛物线P与直线l及y轴围成的图形面积为,求抛物线P的方程;
(III)当时,求椭圆离心率e的取值范围。


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A.B是椭圆上两点,O是坐标原点,定点,向量在向量方向上的投影分别是m.n ,且7mn ,动点P满足
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过点E的直线l与C交于两个不同的点M.N,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与直线交于两点,过原点与线段中点的直线的斜率为,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆+y2=1中斜率为1的平行弦的中点的轨迹方程是_________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆经过原点,且焦点F1(1,0),F(3,0),则其离心率为 (  )
A.B.C.D.

查看答案和解析>>

同步练习册答案