精英家教网 > 高中数学 > 题目详情

如图(1),等腰直角三角形的底边,点在线段上,,现将沿折起到的位置(如图(2)).

(Ⅰ)求证:
(Ⅱ)若,直线与平面所成的角为,求长.

(Ⅰ)详见解析(Ⅱ).

解析试题分析:(Ⅰ)要证线线垂直,可先考虑纯线面垂直,要证线面垂直,先找出图中的线线垂直,使结论得证;(Ⅱ)为方便利用直线与平面所成的角为,可建立空间直角坐标系,利用空间向量相关计算公式建立关于长度的方程,解之即可.
试题解析:(Ⅰ)平面

(Ⅱ)
分别以所在直线为轴,轴,轴建立空间直角坐标系(如图)

,则
可得 ,
设平面的法向量,令,可得,因此是平面的一个法向量,与平面所成的角为,即
解之得:,或(舍),因此可得的长为
考点:直线与平面的位置关系、空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是正方形所在平面外一点,且,若分别是的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形为直角梯形,为等边三角形,且平面平面中点.

(1)求证:
(2)求平面与平面所成的锐二面角的余弦值;
(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为

(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(I)求证:A1C⊥平面BCDE;
(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知直线上两点A,B的坐标分别为,,且直线与直线垂直,则的值为(    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分)(注意:在试题卷上作答无效)

如图,四棱锥中, ,,侧面为等边三角形..
(I)     证明:
(II)   求AB与平面SBC所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点的中点.

(1)求异面直线所成角的余弦值;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案