精英家教网 > 高中数学 > 题目详情
(2012•眉山二模)对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=
x26
和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为
②④
②④
.(把所有正确命题的序号都填上)
分析:①可通过举指数函数的例子来说明此命题是错误的;
②可研究函数的极值结合单调性判断出函数的图象与X轴的交点个数从而得出零点个数,即可判断命题的真假;
③构造函数f(x)=
x2
6
-|log2x|,通过零点存在定理研究函数有几个零点,即可得出两函数有几个交点;
④函数f(x)对x∈R都满足f(3+x)=f(3-x),可得出函数的图象关于x=3对称,由对称性即可判断出命题的真假.
解答:解:①若函数y=f(x)有反函数,则f(x)有且仅有一个零点是错误的,譬如y=2x,是单调函数,有反函数,但其函数值恒大于0,无零点;
②函数f(x)=2x3-3x+1有3个零点正确;由于f′(x)=6x2-3,可解得函数f(x)=2x3-3x+1在区间(-∞,-
2
2
)与(
2
2
,+∞)上是增函数,在(-
2
2
2
2
)是减函数,故函数存在极大值f(-
2
2
)>0,极小值f(
2
2
)<0,故函数有三个零点;
③函数y=
x2
6
和y=|log2x|的图象的交点有且只有一个是错误的,可利用存在零点的条件f(a)f(b)<0来解决这个问题,两函数图象的交点的横坐标就是函数f(x)=
x2
6
-|log2x|的零点,
其中f(1)=
1
6
>0,f(2)=-
1
3
<0,f(4)=
2
3
>0,所以在直线x=1右侧,函数有两个零点.一个在(1,2)内,一个在(2,4)内,故函数f(x)=
x2
6
-|log2x|共有3个零点,即函数y=
x2
6
和y=|log2x|的图象有3个交点.
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18是正确的,由函数f(x)对x∈R都满足f(3+x)=f(3-x),可得函数的图象关于x=3对称,又函数f(x)恰有6个不同的零点,此6个零点构成三组关于x=3对称的点,由中点坐标公式可得出这6个零点的和为18.
故答案为②④
点评:本题考查命题的真假判断及利用导数研究函数的零点,利用零点存在定理判断零点的个数,函数图象的对称性,涉及到的知识点较多,综合性强,属于基础知识与技巧训练题,解答时要严谨认真,全面掌握相关基础知识是迅速解题的保证
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山二模)某市高三调研考试中,对数学在90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为90,那么90~100分数段的人数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)已知双曲线
x2
a2
-
y2
b2
=1的一个焦点与抛物线x=
1
4
y2的焦点重合,且双曲线的离心率等于
5
,则该双曲线的方程为
5x2-
5
4
y2=1
5x2-
5
4
y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)(
x
+
2
x2
)
n
展开式中只有第六项的二项式系数最大,则展开式中的常数项等于
180
180

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)计算(log318-log32)×(
8
125
)
1
3
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)设函数f(x)=(x-1)2+blnx,其中b为常数.
(1)当b>
1
2
时,判断函数f(x)在定义域上的单调性;
(2)当b≤0时,求f(x)的极值点并判断是极大值还是极小值;
(3)求证对任意不小于3的正整数n,不等式
1
n2
<ln(n+1)-lnn<
1
n
都成立.

查看答案和解析>>

同步练习册答案