【题目】已知直线
:
,圆
:
.
(1)判断直线
与圆的位置关系,并证明你的结论;
(2)直线
过直线
的定点且
,若
与圆
交与
两点,
与圆
交与
两点,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆
相交于
、
两点,且
,求证:
的面积为定值并求出定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列判断:①一条直线和一点确定一个平面;②两条直线确定一个平面;③三角形和梯形一定是平面图形;④三条互相平行的直线一定共面其中正确的是_______.(写出所有正确判断的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.
,
为不共线向量,若
,则![]()
B. 若
,
为平面内两个不相等向量,则平面内任意向量
都可以表示为![]()
C. 若
,
,则
与
不一定共线
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一颗质地均匀的骰子先后抛掷2次,观察其向上的点数,分别记为
.
(1)若记“
”为事件
,求事件
发生的概率;
(2)若记“
”为事件
,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
⑴从区间
内任取一个实数
,设事件
表示“函数
在区间
上有两个不同的零点”,求事件
发生的概率;
⑵若联系掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为
)得到的点数分别为
和
,记事件
表示“
在
上恒成立”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行了一次“环保知识竞赛”活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
![]()
![]()
(1)求样本容量
和频率分布直方图中的
,
的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设
表示所抽取的3名同学中得分在[80,90)的学生人数,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com