精英家教网 > 高中数学 > 题目详情
函数y=
1-cosx
sinx
的单调递增区间是
 
考点:三角函数的最值
专题:三角函数的求值
分析:由条件利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的单调性,可得结果.
解答: 解:函数y=
1-cosx
sinx
=
1-(1-2sin2
x
2
)
2sin
x
2
cos
x
2
=tan
x
2

令kπ-
π
2
x
2
<kπ+
π
2
,k∈z,求得2kπ-π<x<2kπ+π,
可得函数的单调递增区间是(2kπ-π,2kπ+π),
故答案为:(2kπ-π,2kπ+π),k∈z.
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx(1+sinx)+cos2x
(1)求f(x)的最小正周期;
(2)求f(x)在[-
π
6
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an]中,an+1=
an
1+an
,a1=2,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5这五个数中,任取两个不同的数,则这两个数之和为3或6的概率为(  )
A、
3
10
B、
1
5
C、
1
10
D、
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+θ)+tan(
π
4
-θ)=4,且-π<θ<-
π
2
,求sin2θ-2sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x-a
1+x2
在区间[m,n]上为增函数,且f(m)f(n)=-4,当f(n)-f(m)取得最小值时,n-m的值为
 
,此时a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
sinβ-cosβ
1-tanβ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C所对的边分别为a,b,c,∠A为锐角,已知
m
=(sin2A,-2
3
),
n
=(1,cos2A),且
m
n

(1)求∠A的大小;
(2)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,当x≥0时,f(x)=
cosπx,x∈[0,
1
2
]
2x-1,x∈(
1
2
,+∞)
,则不等式f(x)≤
1
2
的解集为(  )
A、[
1
4
2
3
]∪[
4
3
7
4
]
B、[-
3
4
,-
1
3
]∪[
1
4
2
3
]
C、[
1
3
3
4
]∪[
4
3
7
4
]
D、[-
3
4
,-
1
3
]∪[
1
3
3
4
]

查看答案和解析>>

同步练习册答案