精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在三棱锥中,底面ABC,
AP="AC," 点分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
解:(Ⅰ)BC//平面ADE, BC平面PBC, 平面PBC平面ADE=DE
BC//ED                                …………2分
∵PA⊥底面ABC,BC底面ABC ∴PA⊥BC. ………3分
,∴AC⊥BC.
∵PAAC="A," ∴BC⊥平面PAC.           …………5分
∴DE⊥平面.                       …………6分
(Ⅱ)由(Ⅰ)知, DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,    …………8分
,即AE⊥PC,                 …………9分
∵AP="AC," ∴E是PC的中点,ED是PBC的中位线。………10分
                        ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:已知△PAB所在的平面与菱形ABCD所在的平面垂直,且PA=PB=AB,∠ABC=60°,E为AB的中点.        

(Ⅰ)证明:CE⊥PA;
(Ⅱ)若F为线段PD上的点,且EF与平面PEC的
夹角为45°,求平面EFC与平面PBC夹角的
余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点分别在上,且

(Ⅰ)求证:∥平面
(Ⅱ)若,求的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为正三角形,平面的中点,

(1)求证:DM//面ABC;   
(2)平面平面
(3)求直线AD与面AEC所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

    (本小题满分12分)
如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,E丄平面ABCD,G为EF中点.

(1)求证:CF//平面
(2) 求证:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,平面ABCD,PA=AD=2,AB=1,于点M.

(1)求证:
(2)求直线CD与平面ACM所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在底面边长为2的正四棱锥中,若侧棱与底面所成的角大小为,则此正四棱锥的斜高长为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( (本小题满分12分)

在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,
PB=2,PD=4,E是PD的中点
(1)求证:AE⊥平面PCD;
(2)若F是线段BC的中点,求三棱锥F-ACE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点O为正方体ABCD—A1B1C1D1底面ABCD的中心,则下列结论正确的是(   )
A.直线平面AB1C1B.直线OA1//直线BD1
C.直线直线ADD.直线OA1//平面CB1D1

查看答案和解析>>

同步练习册答案