精英家教网 > 高中数学 > 题目详情
18.在各项均为正数的等比数列{an}中,a2,$\frac{1}{2}$a3,a1成等差数列,则公比q的值为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{5}+1}{2}$C.$\frac{1-\sqrt{5}}{2}$D.$\frac{\sqrt{5}-1}{2}$或$\frac{\sqrt{5}+1}{2}$

分析 根据等差中项的定义建立方程关系,结合等比数列的通项公式求出公比即可.

解答 解:∵a2,$\frac{1}{2}$a3,a1成等差数列,
∴a2+a1=2×$\frac{1}{2}$a3=a3
即a1q2-a1-a1q=0,
即q2-q-1=0,
解得q=$\frac{1-\sqrt{5}}{2}$或$\frac{\sqrt{5}+1}{2}$,
∵各项均为正数,
∴q>0,则q=$\frac{1-\sqrt{5}}{2}$不成立,
则q=$\frac{\sqrt{5}+1}{2}$,
故选:B

点评 本题主要考查等比数列公比的求解,根据等差数列和等比数列的性质和通项公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$且$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{c}$|=5.设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ1,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为θ2,$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为θ3,则它们的大小关系是(  )
A.θ1<θ2<θ3B.θ1<θ3<θ2C.θ2<θ3<θ1D.θ3<θ2<θ1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,A,B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=$\frac{3}{5}$,sinB=$\frac{\sqrt{10}}{10}$,
(1)求A+B的值         
(2)若a-b=$\sqrt{2}$-1,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某校在一次考试中,5名学生的历史和语文成绩如下表:
学生的编号i12345
历史成绩x8075706560
语文成绩y7066646862
(Ⅰ)若在本次考试中,规定历史成绩在70以上(包括70分)且语文成绩在65分以上(包括65分)的为优秀,计算这五名同学的优秀率;
(Ⅱ)根据上表利用最小二乘法,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=0.28;
(Ⅲ)利用(Ⅱ)中的线性回归方程,试估计历史90分的同学的语文成绩.(四舍五入到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=xlnx-ax2-x(a∈R).
(I)若函数f(x)在x=1处取得极值,求a的值;
(Ⅱ)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围;
(Ⅲ)求证:ln(2×3×…×2015)${\;}^{\frac{1}{1008}}$<2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a、b是方程x+lgx=4,x+10x=4的解,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,则关于方程x的方程f(x)=x的解的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,则A等于(  )
A.30°B.150°C.30°或150°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列与集合A={x|0≤x<3且x∈N}相同的集合为(  )
A.{x|0≤x<3}B.{0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}的前n项和Sn=t•2n-1+1,则实数t的值为(  )
A.-2B.-1C.2D.0.5

查看答案和解析>>

同步练习册答案